2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãF£¨-1£¬1£©¼°Ö±Ïßl£ºx-y+1=0£¬¶¯µãP£¨x£¬y£©Âú×ãÏÂÁÐÁ½¸öÌõ¼þ£º¢Ù$|{PF}|=\sqrt{2}d$£¬ÆäÖÐdÊÇPµ½lµÄ¾àÀ룻¢Ú$\left\{\begin{array}{l}x£¼0\\ y£¾0\\ x-y£¾-\frac{33}{8}\end{array}\right.$£¬Ôò¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³ÌΪxy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©£®

·ÖÎö Çó³ö|PF|£¬d£¬¸ù¾Ý£º¢Ù$|{PF}|=\sqrt{2}d$£¬ÆäÖÐdÊÇPµ½lµÄ¾àÀ룻¢Ú$\left\{\begin{array}{l}x£¼0\\ y£¾0\\ x-y£¾-\frac{33}{8}\end{array}\right.$¼´¿ÉÇ󶯵ãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»

½â´ð ½â£º|PF|=$\sqrt{£¨x+1£©^{2}+£¨y-1£©^{2}}=\sqrt{{x}^{2}+{y}^{2}+2x-2y+2}$£¬d=$\frac{|x-y+1|}{\sqrt{2}}$£®
ÓÉ¢Ù|PF|=$\sqrt{2}$dµÃ£¬$\sqrt{{x}^{2}+{y}^{2}+2x-2y+2}$=$\sqrt{2}$•$\frac{|x-y+1|}{\sqrt{2}}$
¼´xy=-$\frac{1}{2}$£¬
½«xy=-$\frac{1}{2}$´úÈë¢ÚµÃ£º$\left\{\begin{array}{l}{x£¼0}\\{x+\frac{1}{2x}£¾-\frac{33}{8}}\end{array}\right.$£¬¼´-4$£¼x£¼-\frac{1}{8}$
¡à¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³ÌΪ xy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©
¹Ê´ð°¸Îª£ºxy=-$\frac{1}{2}$£¬£¨-4$£¼x£¼-\frac{1}{8}$£©

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¼¯ºÏ$A=\left\{{\frac{¦Ð}{7}£¬\frac{2¦Ð}{7}£¬\frac{3¦Ð}{7}£¬\frac{4¦Ð}{7}£¬\frac{5¦Ð}{7}£¬\frac{6¦Ð}{7}}\right\}$©q
£¨1£©Èô´Ó¼¯ºÏAÖÐÈÎȡһ¶Ô½Ç£¬ÇóÖÁÉÙÓÐÒ»¸ö½ÇΪ¶Û½ÇµÄ¸ÅÂÊ£»
£¨2£©¼Ç$\overrightarrow a=£¨1+cos¦È£¬1+sin¦È£©$£¬Çó´Ó¼¯ºÏAÖÐÈÎȡһ¸ö½Ç×÷Ϊ¦ÈµÄÖµ£¬ÇÒʹµÃ¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì${x^2}-2|{\overrightarrow a}|x+5=0$ÓнâµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏA={0£¬1£¬2}£¬B={y|y=2x£¬x¡ÊA}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{0£¬1£¬2}B£®{1£¬2}C£®{1£¬2£¬4}D£®{1£¬4}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÎÒÃÇÒ×Öª$\sqrt{2}-1£¾2-\sqrt{3}£¬\sqrt{3}-\sqrt{2}£¾\sqrt{5}-2£¬2-\sqrt{3}£¾\sqrt{6}-\sqrt{5}£¬¡­$£¬´ÓÇ°Ãæn¸ö²»µÈʽÀà±ÈµÃ¸üÒ»°ãµÄ½áÂÛΪ£¨¡¡¡¡£©
A£®$\sqrt{n+1}-n£¾\sqrt{n+3}-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$B£®$\sqrt{n+1}-n£¾\sqrt{n+3}-n£¨{n¡Ê{N^*}}£©$
C£®$\sqrt{n+1}-\sqrt{n}£¾\sqrt{n+3}-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$D£®$\sqrt{n+1}-\sqrt{n}£¾n-\sqrt{n+2}£¨{n¡Ê{N^*}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{{£¨8+¦Ð£©\sqrt{3}}}{3}$B£®$\frac{{£¨8+2¦Ð£©\sqrt{3}}}{6}$C£®$\frac{{£¨8+¦Ð£©\sqrt{3}}}{6}$D£®$\frac{{£¨4+¦Ð£©\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èôa£¾0£¬b£¾0£¬ÇÒ$\frac{1}{a+1}+\frac{1}{a+2b}=1$£¬Ôò2a+bµÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{5}{2}$C£®$4+2\sqrt{3}$D£®$\frac{1}{2}+\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôijÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖи©ÊÓͼΪֱ½ÇÌÝÐΣ¬ÔòÕâ¸öÈýÀâ×¶ËĸöÃæµÄÃæ»ýµÄ×î´óÖµÊÇ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®[Ñ¡×ö¶þ]ÇúÏßy=x2µÄ²ÎÊý·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$£¨tΪ²ÎÊý£©B£®$\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©
C£®$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$£¨tΪ²ÎÊý£©D£®$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=lnx-$\frac{1}{2}$ax2+£¨1-a£©x+1£®
£¨1£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©ÔÚx=2´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚx¡Ê[1£¬2]ʱµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸