| A. | $\frac{{4+\sqrt{3}}}{6}$ | B. | $\frac{5}{6}$ | C. | $\frac{{9+\sqrt{3}}}{2}$ | D. | 5 |
分析 根据三视图判断几何体是正方体削去一个三棱锥,截面三角形为等边三角形,根据正方体的边长计算截面三角形的边长,求出截面的面积,再求几何体的其他各面的面积,然后相加
解答
解:由三视图知几何体是边长为2的正方体削去一个三棱锥,其直观图如图:
截面三角形为等边三角形,边长为$\sqrt{2}$,
∴截面的面积为$\frac{\sqrt{3}}{4}×2=\frac{\sqrt{3}}{2}$,
∴几何体的表面积S=3×1×1+$\frac{\sqrt{3}}{2}$
+$\frac{3}{2}$=$\frac{9+\sqrt{3}}{2}$.
故选:C.
点评 本题考查了由三视图求几何体的表面积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{(8+π)\sqrt{3}}}{3}$ | B. | $\frac{{(8+2π)\sqrt{3}}}{6}$ | C. | $\frac{{(8+π)\sqrt{3}}}{6}$ | D. | $\frac{{(4+π)\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$(t为参数) | B. | $\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$(t为参数) | ||
| C. | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数) | D. | $\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$(t为参数) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{25}$ | B. | $\frac{3}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{2}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=cos(2x+$\frac{π}{3}$) | B. | y=cos(2x+$\frac{π}{6}$) | C. | y=cos(2x-$\frac{π}{3}$) | D. | y=cos(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com