| A. | 0 | B. | 1 | C. | 32 | D. | -1 |
分析 Tr+1=${∁}_{5}^{r}(-x)^{r}$=(-1)r${∁}_{5}^{r}$xr,当r为奇数时,${a}_{r}{∁}_{5}^{r}$<0.当r为偶数时,${a}_{r}{∁}_{5}^{r}$>0.可得|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=a0+a1+a2+a3+a4+a5,对${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,令x=1,即可得出.
解答 解:Tr+1=${∁}_{5}^{r}(-x)^{r}$=(-1)r${∁}_{5}^{r}$xr,
当r为奇数时,${a}_{r}{∁}_{5}^{r}$<0.当r为偶数时,${a}_{r}{∁}_{5}^{r}$>0.
∴|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=a0+a1+a2+a3+a4+a5.
对${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,
令x=1,可得:a0+a1+a2+a3+a4+a5=(1-1)2=0.
故选:A.
点评 本题考查了二项式定理的应用、方程的思想方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{n+1}-n>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$ | B. | $\sqrt{n+1}-n>\sqrt{n+3}-n({n∈{N^*}})$ | ||
| C. | $\sqrt{n+1}-\sqrt{n}>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$ | D. | $\sqrt{n+1}-\sqrt{n}>n-\sqrt{n+2}({n∈{N^*}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | $4+2\sqrt{3}$ | D. | $\frac{1}{2}+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com