分析 由已知及正弦定理,三角形内角和定理,诱导公式可得4cosBsinB=3sinB,结合范围B∈(0,π),可求cosB,进而利用同角三角函数基本关系式可求sinB的值.
解答 解:∵4cosB(acosC+ccosA)=3b,
∴由正弦定理可得:4cosB(sinAcosC+sinCcosA)=3sinB,
可得:4cosBsin(A+C)=3sinB,
∴4cosBsinB=3sinB,
∵B∈(0,π),sinB>0,
∴可得:cosB=$\frac{3}{4}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{7}}{4}$.
点评 本题主要考查了正弦定理,三角形内角和定理,诱导公式,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | sin3-cos3 | B. | cos3-sin3 | C. | ±(sin3-cos3) | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2π+\frac{8}{3}$ | B. | $2π+\frac{4}{3}$ | C. | $\frac{10}{3}π$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com