精英家教网 > 高中数学 > 题目详情
17.如图是一个几何体的三视图,则此几何体的体积是(  )
A.$2π+\frac{8}{3}$B.$2π+\frac{4}{3}$C.$\frac{10}{3}π$D.$\frac{8π}{3}$

分析 由已知得到几何体是$\frac{1}{4}$圆锥与$\frac{1}{2}$圆柱的组合体,由图中数据求体积.

解答 解:由已知得到几何体是$\frac{1}{4}$圆锥与$\frac{1}{2}$圆柱的组合体,
其中圆锥的底面半径为2,高为2,圆柱的底面半径为2,高为1,所以体积为:$\frac{1}{4}×\frac{1}{3}×π×{2}^{2}×2+\frac{1}{2}×π×{2}^{2}×1=\frac{8π}{3}$;
故选D.

点评 本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知不同的直线l,m,n与不同的平面α,β,则下列四个命题中错误的是(  )
A.若m∥l,n∥l,则m∥nB.若m⊥α,m∥β,则α⊥βC.若m⊥β,α⊥β,则m∥αD.若m∥α,n⊥α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别是a,b,c,已知4cosB(acosC+ccosA)=3b.求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,A(-l,0),B(1,0),若△ABC的重心G和垂心H满足GH平行于x轴( G,H不重合).求动点C的轨迹Γ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我国魏晋时期的数学家刘徽,他在注《九章算术》中采用正多边形面积逐渐逼近圆面积的算法计算圆周率π,用刘徽自己的原话就是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.”设计程序框图是计算圆周率率不足近似值的算法,其中圆的半径为1.若程序中输出的S是圆的内接正1024边形的面积,则判断框中应填(  )
A.i<7B.i<8C.i<9D.i<10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积为(  )
A.40B.30C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n是两条不同直线,α,β是两个不同的平面,则下列结论正确的是(  )
A.若m∥n,n?α,则m∥αB.m∥α,n?a,则m∥n
C.若m∥β,n∥β,m?α,n?α,则α∥βD.α∥β,n?α,则n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则$\frac{n}{p}$等于(  )
A.3200B.2700C.1350D.1200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.现有4道数学试题,老师安排甲、乙、丙三位同学解答,要求每人至少解答一道,则不同的安排方法有(  )
A.18种B.24种C.36种D.42种

查看答案和解析>>

同步练习册答案