精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}x+1\begin{array}{l},{\;\;x}\end{array}≤0,\\{log_2}x\begin{array}{l},{x>0}\end{array},\end{array}$则方程f[f(x)]+1=0解的个数是(  )
A.1B.2C.3D.4

分析 首先画出分段函数f(x)的图形,由题意知:f(f(x))=-1,可解得:f(x)=-2 或 f(x)=$\frac{1}{2}$;利用数形结合法可直接判断交点个数;

解答 解:根据f(x)表达式画出f(x)图形如右图.
由题意知:f(f(x))=-1,可解得:f(x)=-2 或 f(x)=$\frac{1}{2}$;
当f(x)=-2时,f(x)图形与直线y=-2有两个交点;
当f(x)=$\frac{1}{2}$时,f(x)图形与直线y=$\frac{1}{2}$有两个交点;
综上,f(f(x))+1=0有4个解;
故选:D

点评 本题主要考查了分段函数的图形画法,以及方程根与图形交点的转换与数形结合思想的应用,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若$\overrightarrow{a}$,$\overrightarrow{b}$是互不平行的两个向量,且$\overrightarrow{AB}$=λ1$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+λ2$\overrightarrow{b}$,λ1,λ2∈R,则A、B、C三点共线的充要条件是(  )
A.λ12=1B.λ12=-1C.λ1λ2=1D.λ1λ2=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)是定义在R上的减函数,且f(x)>0恒成立,若对任意的x,y∈R,都有f(x-y)=$\frac{f(x)}{f(y)}$,
(1)求f(0)的值,并证明对任意的x,y∈R,f(x+y)=f(x)•f(y);
(2)若f(-1)=3,解不等式$\frac{{f({x^2})•f(10)}}{f(7x)}$≤9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式2x-2<1的解集是{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F($\sqrt{2}$,0)为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2,则椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整数,满分为100),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为(  )
A.$\frac{2}{5}$B.$\frac{1}{10}$C.$\frac{9}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若不等式cx2+bx+a<0的解集为{x|-3<x<$\frac{1}{2}$},则不等式的解集为ax2+bx+c≥0(  )
A.$\{x|-2<x<\frac{1}{3}\}$B.$\{x|x>\frac{1}{3}$或x<-2}C.$\{x|-\frac{1}{3}≤x≤2\}$D.{x|x<-3或$x>\frac{1}{2}\}$

查看答案和解析>>

科目:高中数学 来源:2017届山东临沭一中高三上学期10月月考数学(文)试卷(解析版) 题型:填空题

已知函数,则

查看答案和解析>>

科目:高中数学 来源:2017届江西吉安一中高三上学期段考一数学(理)试卷(解析版) 题型:解答题

某电视台举行一个比赛类型的娱乐节目, 两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.

(1)根据茎叶图中的数据,求出队第六位选手的成绩;

(2)主持人从队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;

(3)主持人从两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案