【题目】已知直三棱柱
中的底面为等腰直角三角形,
,点
分别是边
,
上动点,若直线
平面
,点
为线段
的中点,则
点的轨迹为
![]()
A. 双曲线的一支
一部分
B. 圆弧
一部分![]()
C. 线段
去掉一个端点
D. 抛物线的一部分
科目:高中数学 来源: 题型:
【题目】已知函数
的最大值为
,其图像相邻的两条对称轴之间的距离为
,且
的图像关于点
对称,则下列结论正确的是( ).
A.函数
的图像关于直线
对称
B.当
时,函数
的最小值为![]()
C.若
,则
的值为![]()
D.要得到函数
的图像,只需要将
的图像向右平移
个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93.
(1)求该样本的中位数和方差;
(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
同意 | 不同意 | 合计 | |
男生 | a | 5 | |
女生 | 40 | d | |
合计 | 100 |
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:![]()
| 0.15 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为1的正方形
沿
轴滚动,点
恰好经过原点.设顶点
的轨迹方程是
,则对函数
有下列判断:①函数
是偶函数;②对任意的
,都有
;③函数
在区间
上单调递减;④函数
的值域是
;⑤
.其中判断正确的序号是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2016年8月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:
出场顺序 | 1号 | 2号 | 3号 | 4号 | 5号 |
获胜概率 |
|
|
|
|
|
若甲队横扫对手获胜(即3∶0获胜)的概率是
,比赛至少打满4场的概率为
.
(1)求
,
的值;
(2)求甲队获胜场数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构用“10分制”调查了各阶层人士对某次国际马拉松赛事的满意度,现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数
以小数点前的一位数字为茎,小数点后的一位数字为叶
:
![]()
(1)指出这组数据的众数和中位数;
(2)若满意度不低于
分,则称该被调查者的满意度为“极满意”,求从这16人中随机选取3人,至少有2人满意度是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体
人数很多
任选3人,记
表示抽到“极满意”的人数,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com