【题目】(本小题满分12分)已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.
【答案】(Ⅰ);(Ⅱ)当时,函数无极值.当时,函数在处取得极小值,无极大值.
【解析】
试题分析:(Ⅰ)先求a=2时的导函数,然后求出x=1时的导函数即该点处的切线斜率,然后由点斜式求出切线方程.(Ⅱ)求出导函数,因为含有参数a,所以结合导函数的零点与定义域区间端点的位置关系进行分类讨论,从而得出函数的单调性,并由极值点的定义判断出函数的极值.
试题解析:函数的定义域为,,
(Ⅰ)当时,,,
∴,,
∴在点处的切线方程为,
即
(Ⅱ)由,可知:
①当时,,函数为上的增函数,函数无极值;②当时,由,解得;
∵时,,时,
∴在处取得极小值,且极小值为,无极大值.
综上:当时,函数无极值.
当时,函数在处取得极小值,无极大值.
科目:高中数学 来源: 题型:
【题目】已知双曲线C过点A(﹣ ,1),且与x2﹣3y2=1有相同的渐近线.
(1)求双曲线C的标准方程;
(2)过双曲线C的一个焦点作倾斜角为45°的直线l与双曲线交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: .
(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱中,四边形为梯形, ,且.过三点的平面记为, 与的交点为.
(I)证明: 为的中点;
(II)求此四棱柱被平面所分成上下两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点(1, )是函数f(x)= ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c﹣f(n).数列{bn}(bn>0)的首项为2c,前n项和满足 = +1(n≥2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ }的前n项和为Tn , 问使Tn> 的最小正整数n是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函数f(x)=lg(2x+a)的定义域为集合C,满足AC,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是y=f(x)的导函数的图象,现有四种说法: 1)f(x)在(﹣2,1)上是增函数;
2)x=﹣1是f(x)的极小值点;
3)f(x)在(﹣1,2)上是增函数;
4)x=2是f(x)的极小值点;
以上说法正确的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com