【题目】如图,直四棱柱
中,四边形
为梯形,
,且
.过
三点的平面记为
,
与
的交点为
.
(I)证明:
为
的中点;
(II)求此四棱柱被平面
所分成上下两部分的体积之比.
![]()
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)由已知得平面QBC∥平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点.
(2)连接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a.V下=
+V四棱锥QABCD=
ahd .
=
ahd,由此能求出此四棱柱被平面α所分成上下两部分的体积之比.
(I)证明:延长
交于
,则
平面
,
又
平面
,平面
平面
,
所以
因为
![]()
所以
,即
为
的中点.
(II)如图所示,连接
.设
,梯形
的高为
,四棱柱被平面
所分成上下两部分的体积分别为
和
,
,则
.
三棱椎
, 四棱椎
所以
=三棱椎
+四棱椎
=
.又四棱柱
,
所以
=四棱柱
-
,
故
.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=n2﹣4n,数列{bn}中,b1=
对任意正整数
.
(1)求数列{an}的通项公式;
(2)是否存在实数μ,使得数列{3nbn+μ}是等比数列?若存在,请求出实数μ及公比q的值,若不存在,请说明理由;
(3)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
⊥平面
,
,
,
,
分别为
的中点.(19)
(I)求
到平面
的距离;
(II)在线段
上是否存在一点
,使得平面
∥平面
,若存在,试确定
的位置,并证明此点满足要求;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点(1,
)是函数f(x)=
ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c﹣f(n).数列{bn}(bn>0)的首项为2c,前n项和满足
=
+1(n≥2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{
}的前n项和为Tn , 问使Tn>
的最小正整数n是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+1)=
,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数a和b,定义运算“*”:
,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1 , x2 , x3 , 则实数m的取值范围是;x1+x2+x3的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com