【题目】已知函数
的定义域为
;
(1)求实数
的取值范围;
(2)设实数
为
的最大值,若实数
,
,
满足
,求
的最小值.
【答案】(1)
;(2)![]()
【解析】
(1)由定义域为R,只需求解|x﹣3|+|x|的最小值,即可得实数m的取值范围(2)根据(1)实数t的值,利用柯西不等式即可求解最小值.
(1)函数
的定义域为R,
那么|x﹣3|+|x|﹣m≥0对任意x恒成立,∴只需m≤(|x﹣3|+|x|)min,
根据绝对值不等式|x﹣3|+|﹣x|≥|x﹣3﹣x|=3
∴3﹣m≥0,所以m≤3,
故实数m的取值范围(﹣∞,3];
(2)由(1)可知m的最大值为3,即t=3,
那么a2+b2+c2=t2=9,
则a2+1+b2+1+c2+1=12,
由柯西不等式可得(
)(a2+1+b2+1+c2+1)≥(1+1+1)2=9,
∴(
)
,当a=b=c
时取等号,
故得
的最小值为
.
科目:高中数学 来源: 题型:
【题目】某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在
处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为
,距离为15海里的
处,并测得渔船正沿方位角为
的方向,以15海里/小时的速度向小岛
靠拢,我海军舰艇立即以
海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,离心率为
.不过原点的直线
与椭圆
相交于
两点,设直线
,直线
,直线
的斜率分别为
,且
成等比数列.
(1)求
的值;
(2)若点
在椭圆
上,满足
的直线
是否存在?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假.
(1)过一条直线的平面有无数多个;
(2)如果两个平面有两个公共点
,那么它们就有无数多个公共点,并且这些公共点都在直线
上;
(3)两个平面的公共点组成的集合,可能是一条线段;
(4)两个相交平面可能存在不在一条直线上的3个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问
名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | |
读营养说明 |
|
|
|
不读营养说明 |
|
|
|
总计 |
|
|
|
附:
|
|
|
|
|
|
|
|
![]()
(1)由以上列联表判断,能否在犯错误的概率不超过
的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的
名不读营养说明的大学生中随机选取
名学生,求抽到女生人数
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某铁制零件由一个正四棱柱和一个球组成,已知正四棱柱底面边长与球的直径均为1cm,正四棱柱的高为2cm.现有这种零件一盒共50kg,取铁的密度为
,
.
![]()
(1)估计有多少个这样的零件;
(2)如果要给这盒零件的每个零件表面涂上一种特殊的材料,则需要能涂多少平方厘米的材料(球与棱柱接口处的面积不计,结果精确到
)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com