精英家教网 > 高中数学 > 题目详情
17.若偶函数f(x)(x∈R)在(-∞,0]为增函数,则不等式f(x-1)≥f(1)的解集为[0,2].

分析 先利用f(x)在x∈(-∞,0)上为增函数,再利用y=f(x)为偶函数把f(x-1)转化为f(|x-1|)结合单调性即可求解.

解答 解:因为f(x)在x∈(-∞,0)上为增函数,函数y=f(x)为偶函数,故有f(-x)=f(x)=f(|x|).
所以,不等式f(x-1)≥f(1)
所以,f(|x-1|)≥f(1)
所以,|x-1|≤1
解得0≤x≤2.
故答案是:[0,2].

点评 本题考查利用函数的对称性及函数的单调性脱抽象的法则,将抽象不等式转化为具体不等式解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.集合M={x|x-2=0}的子集的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设抛物线y2=2px(x>0)的焦点为F,点A(0,$\sqrt{2}$),线段FA的中点在抛物线上,设动直线l:y=kx+m与抛物线相切于点P,且与抛物线的准线相交于点Q,以PQ为直径的圆记为圆C.
(1)求p的值;
(2)证明:圆C与x轴必有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(2x+$\frac{π}{3}$)图象的对称轴方程可以为(  )
A.x=-$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=-$\frac{5π}{12}$D.x=-$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若p:a≤2,q:(a-2)≤0,则¬p是¬q的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow m=(a,-2)$,$\overrightarrow n=(1,1-a)$,且$\overrightarrow m$与$\overrightarrow n$方向相反,则实数a的值为(  )
A.-1B.$\frac{2}{3}$C.2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆x2+y2=8内有一点P(-1,2),AB为经过点P的直线与该圆截得的弦,则当弦AB被点P平分时,直线AB的方程为x-2y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆E:$\frac{x^2}{18}+\frac{y^2}{9}$=1,斜率为1的直线交E于A,B两点,若AB的中点为P,O为坐标原点,则直线OP的斜率为(  )
A.-1B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$y=sin3x-\sqrt{3}cos3x$图象的一个对称中心可以是(  )
A.(0,0)B.$(\frac{π}{3},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{9},0)$

查看答案和解析>>

同步练习册答案