精英家教网 > 高中数学 > 题目详情
5.(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)等于(  )
A.88B.22C.44D.222

分析 先把原式转化为[(1+tan1°)(1+tan 44°〕][(1+tan2°)(1+tan 43°〕]…[(1+tan22°)(1+tan 23°〕](1+tan 45°〕利用正切的两角和公式化简整理.

解答 解:(1+tan1°)(1+tan2°)…〔1+tan44°)
=[(1+tan1°)(1+tan 44°〕][(1+tan2°)(1+tan 43°〕]…[(1+tan22°)(1+tan 23°〕]
=[(1+$\frac{1-tan44°}{1+tan44°}$)(1+tan 44°〕][(1+$\frac{1-tan43°}{1+tan43°}$)(1+tan 43°〕]…[(1+$\frac{1-tan23°}{1+tan23°}$)(1+tan 23°)]
=2×2…2×2
=222
故选:D.

点评 本题主要考查了两角和与差的正切函数公式的运用.解题的关键是注意到tan1°和tan44°,与tan45°的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知a=$\sqrt{2}$,b=2,A=45°,则B=(  )
A.90°B.30°C.45°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,圆P:(x-1)2+y2=4,圆Q:(x+1)2+y2=4.
(1)以O为极点,x轴正半轴为极轴,建立极坐标系,求圆P和圆Q的极坐标方程,并求出这两圆的交点M,N的极坐标;
(2)求这两圆的公共弦MN的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=4-\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=4sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l将于点A、B,若点M的坐标为(1,4),求|MA|+|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出函数f(x)=x2-|4x-4|的图象,并求出当x∈[-3,$\frac{5}{2}$]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合M={-1,0,1},N={x|x2+x≤0},则M∩N={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集U=R,集合A={x|-1<x<3},B={x|0<x≤4},C={x|a<x<a+1}.
(1)求A∪B,(∁UA)∩(∁UB);
(2)若C⊆(A∩B)求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=f(x)满足:对任意x,y∈R,有f(x-y)=f(x)-f(y),且当x>0时,f(x)<0.
(1)判断y=f(x)的奇偶性;
(2)求不等式f(x-1)>f(3-2x)的解集.

查看答案和解析>>

同步练习册答案