分析 (1)由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,能求出圆C的直角坐标方程.
(2)将直线l的参数方程代入圆的直角坐标方程,化简整理,再由韦达定理和t的几何意义能求出|MA|+|MB|的值.
解答 解:(1)圆C的方程为ρ=4sinθ,
∴ρ2=4ρsinθ,
∴圆C的直角坐标方程为x2+y2-4y=0.
即x2+(y-2)2=4.
(2)将直线l的参数方程代入圆的方程,整理,得t2-3$\sqrt{2}$t+1=0,
△=18-4=14>0,设t1,t2为方程的两个实根,
则t1+t2=3$\sqrt{2}$,t1t2=1,∴t1,t2均为正数,
又直线l过M(1,4),
由t的几何意义得:
|MA|+|MB|=|t1|+|t2|=t1+t2=3$\sqrt{2}$.
点评 本题考查极坐标方程和直角坐标方程的互化,同时考查直线与圆的位置关系,考查直线参数方程的运用,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{12}$ | C. | 24 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+(y-1)2=4 | B. | (x+1)2+(y+1)2=4 | C. | (x-1)2+(y-1)2=4 | D. | (x+1)2+(y-1)2=2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com