精英家教网 > 高中数学 > 题目详情
11.已知$p:{log_2}x<0,q:{x^2}<2x$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用函数的单调性与不等式的解法分别化简命题p,q,即可判断出结论.

解答 解:对于P:由log2x<0,解得0<x<1.
对于q:由x2-2x<0,解得0<x<2.
∴p是q的充分不必要条件.
故选:A.

点评 本题考查了简易逻辑的判定方法、函数的单调性、不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.一超市在销售一批大小相近的某时令水果时,由于存放的时间对口味影响较大,超市根据调研决定最多销售5天,第6天就会扎成果汁.进价2元一个,售价10元一个,每天的仓储保管费平均为每个水果每天0.5元,(第一天售出的水果,算一天仓储保管费,第二天售出的水果,算两天仓储保管费,以此类推)一个水果榨成果汁后能卖2元且能很快售完,果汁不计仓储保管成本.按以下规则定价:
售出时间第一天第二天第三天第四天第五天
售出时折扣原价9折8折7折5折
从该批水果中随机抽取100个贴上标记,根据这100个水果的销售情况得到如下数据:
售出的时间第一天第二天第三天第四天第五天
售出的个数402515510
(1)①估计一个水果至多两天(包括两天)销售出去的概率;
②若一个水果在第二天售出,求这个水果产生的利润.
(2)以事件发生的频率作为相应的概率,在这批水果的销售活动中,设一个水果产生的利润为X元,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2alnx-2(a+1)x+x2(a≤1)
(1)讨论f(x)的单调性;
(2)若f(x)在区间[$\frac{1}{e}$,e2]上有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosθ\\ y=tsinθ\end{array}\right.$,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α-2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大小;
(2)若△ABC的外接圆直径为1,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,满足S3=6,S5=15.
(1)求数列{an}的通项公式.
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|-1<x<3},B={y|y=2x,x∈[0,2]},则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l过点P(-1,2),倾斜角为$\frac{2}{3}$π,圆的极坐标方程为ρ=2cos$(θ+\frac{π}{3})$.
(1)求圆的普通方程;
(2)若直线l与圆相交于M、N两点,求|PM|•|PN|的值.

查看答案和解析>>

同步练习册答案