分析 (1)曲线C的极坐标方程转化为ρ2sin2α=2ρcosα,由此能求出曲线C的直角坐标方程.
(2)把直线的参数方程化入y2=2x,得t2sin2θ-2tcosθ-1=0,设A,B两点对应的参数分别为t1,t2,则|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,由此能求出当$θ=\frac{π}{2}$时,|AB|取最小值2.
解答 解:(1)∵曲线C的极坐标方程为ρsin2α-2cosα=0,
∴ρ2sin2α=2ρcosα,
∴曲线C的直角坐标方程为y2=2x.
(2)直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}+tcosθ\\ y=tsinθ\end{array}\right.$,(t为参数,0<θ<π),
把直线的参数方程化入y2=2x,得t2sin2θ-2tcosθ-1=0,
设A,B两点对应的参数分别为t1,t2,
则${t}_{1}+{t}_{2}=\frac{2cosθ}{si{n}^{2}θ}$,t1•t2=-$\frac{1}{si{n}^{2}θ}$,
|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$
=$\sqrt{\frac{4co{s}^{2}θ}{si{n}^{4}θ}+\frac{4}{si{n}^{2}θ}}$=$\frac{2}{si{n}^{2}θ}$,
∴当$θ=\frac{π}{2}$时,|AB|取最小值2.
点评 本题考查曲线的直角坐标方程的求法,考查弦长的最小值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | [-1,1) | C. | (-1,+∞) | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{28}{31}$ | B. | $\frac{19}{21}$ | C. | $\frac{22}{31}$ | D. | $\frac{17}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6+2$\sqrt{3}$ | B. | 8 | C. | 6+2$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 20 | C. | 35 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {lgan} | B. | {1+an} | C. | $\{\frac{1}{a_n}\}$ | D. | $\{\sqrt{a_n}\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com