精英家教网 > 高中数学 > 题目详情
16.函数y=f(x)的定义域为(-a,0)∪(0,a)(0<a<1),其图象上任意一点P(x,y)满足x2+y2=1,则给出以下四个命题:①函数y=f(x)一定是偶函数;②函数y=f(x)可能是奇函数;③函数y=f(x)在(0,a)上单调递增④若函数y=f(x)是偶函数,则其值域为(a2,1)其中正确的命题个数为(  )
A.1个B.2个C.3个D.4个

分析 画出单位圆,结合图形,根据函数奇偶性和单调性的定义和函数的定义分别进行判断,可得①③④均错,②对.

解答 解:∵P(x,y)满足x2+y2=1,
∴P位于单位圆上.
①当函数y=f(x)对应的图象在第一象限和第三象限时,函数为奇函数,
∴①错误.
②当函数y=f(x)对应的图象在第一象限和第三象限时,函数为奇函数,
∴②正确;
③当函数y=f(x)对应的图象在第一象限和第二象限时,函数y=f(x)在(0,a)上单调递减,
∴③错误;
④函数y=f(x)若是偶函数,则值域是(-1,-a2)或(a2,1),∴④错误.
故选:A.

点评 本题主要考查函数奇偶性的定义和应用,利用函数的定义和单位圆,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosθ\\ y=tsinθ\end{array}\right.$,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α-2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={-1,0,1,2},B={0,2,6},则A∩B={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列四个结论中正确的序号为③.
①若m⊥n,n∥α,则m⊥α;
②若m∥β,α⊥β,则m⊥α;
③若m⊥β,n⊥β,n⊥α,则m⊥α;
④若m⊥n,n⊥β,α⊥β,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx(x∈R)
(1)求函数f(x)的最小正周期;
(2)当函数f(x)取得最大值时,求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l过点P(-1,2),倾斜角为$\frac{2}{3}$π,圆的极坐标方程为ρ=2cos$(θ+\frac{π}{3})$.
(1)求圆的普通方程;
(2)若直线l与圆相交于M、N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z=(2a+i)(1-bi)的实部为2,其中a,b为正实数,则4a+($\frac{1}{2}$)1-b的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C的普通方程;
(2)经过点M(2,1)(平面直角坐标系xOy中的点)作直线l交曲线C于A,B两点,若M恰好为线段AB的中点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)互相垂直,其中x∈R,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.-2或0B.2C.2或2D.2或10

查看答案和解析>>

同步练习册答案