精英家教网 > 高中数学 > 题目详情
1.已知直线l过点P(-1,2),倾斜角为$\frac{2}{3}$π,圆的极坐标方程为ρ=2cos$(θ+\frac{π}{3})$.
(1)求圆的普通方程;
(2)若直线l与圆相交于M、N两点,求|PM|•|PN|的值.

分析 (1)圆的极坐标方程转化为${ρ^2}=ρcosθ-\sqrt{3}ρsinθ$,由此能求出圆的普通方程.
(2)由直线l过点P(-1,2),倾斜角为$\frac{2}{3}π$,求出直线l的参数方程,将直线的参数方程代入圆的方程,得:${t^2}+(3+2\sqrt{3})t+6+2\sqrt{3}=0$,由此能求出|PM|•|PN|的值.

解答 解:(1)因为圆的极坐标方程为$ρ=2cos(θ+\frac{π}{3})=cosθ-\sqrt{3}sinθ$,
所以${ρ^2}=ρcosθ-\sqrt{3}ρsinθ$…(2分)
所以圆的普通方程为${x^2}+{y^2}-x+\sqrt{3}y=0$.               …(4分)
(2)直线l过点P(-1,2),倾斜角为$\frac{2}{3}π$
所以直线l的参数方程为$\left\{\begin{array}{l}x=-1+tcos\frac{2}{3}π\\ y=2+tsin\frac{2}{3}π\end{array}\right.$(t为参数),
即$\left\{\begin{array}{l}x=-1-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)       …(6分)
将直线的参数方程代入圆的普通方程,整理得:${t^2}+(3+2\sqrt{3})t+6+2\sqrt{3}=0$.                       …(8分)
设方程的两根为t1,t2,则${t_1}{t_2}=6+2\sqrt{3}$,所以$|PM|•|PN|=|{t_1}{t_2}|=6+2\sqrt{3}$.               …(10分)

点评 本题考查圆的普通方程的求法,考查两线段长的乘积的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$p:{log_2}x<0,q:{x^2}<2x$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-$\frac{3}{2}$(k+1)x2+3kx+1,其中k∈R.
(1)当k=3时,求函数f(x)在[0,5]上的值域;
(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在路边安装路灯,路宽为OD,灯柱OB长为h米,灯杆AB长为1米,且灯杆与灯柱成120°角,路灯采用圆锥形灯罩,其轴截面的顶角为2θ,灯罩轴线AC与灯杆AB垂直.
(1)设灯罩轴线与路面的交点为C,若OC=5$\sqrt{3}$米,求灯柱OB长;
(2)设h=10米,若灯罩轴截面的两条母线所在直线一条恰好经过点O,另一条与地面的交点为E(如图2);
(i)求cosθ的值;
(ii)求该路灯照在路面上的宽度OE的长;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=f(x)的定义域为(-a,0)∪(0,a)(0<a<1),其图象上任意一点P(x,y)满足x2+y2=1,则给出以下四个命题:①函数y=f(x)一定是偶函数;②函数y=f(x)可能是奇函数;③函数y=f(x)在(0,a)上单调递增④若函数y=f(x)是偶函数,则其值域为(a2,1)其中正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a=5-1.2,b=1.21.1,c=lg$\frac{5}{6}$,则下列结论正确的是(  )
A.a<c<bB.c<b<aC.lna<($\frac{1}{3}$)bD.3a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若θ是第二象限的角,试确定$\frac{cos(cosθ)}{cos(sin2θ)}$的值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A,B为两个互斥事件,且P(A)>0,P(B)>0,则下列结论正确的是(  )
A.A与B相互独立B.若A,B相互独立,则A,B不互斥
C.A,B既相互独立又互斥D.A,B既不相互独立又不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出以下三个结论:
①若数列{an}的前n项和为Sn=3n+1(n∈N*),则其通项公式为an=2•3n-1
②已知a>b,一元二次不等式ax2+2x+b≥0对于一切实数x恒成立,又存在x0∈R,使ax02+2x0+b=0成立,则$\frac{{{a^2}+{b^2}}}{a-b}$的最小值为2$\sqrt{2}$;
③若正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,则实数a的取值范围是(-∞,-3]∪[$\frac{5}{2}$,+∞).
其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案