精英家教网 > 高中数学 > 题目详情
1.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,椭圆的离心率为e1,双曲线的离心率为e2,若|PF2|=|F1F2|,则$\frac{{e}_{2}}{3}$+$\frac{3}{{e}_{1}}$的最小值为(  )
A.6+2$\sqrt{3}$B.8C.6+2$\sqrt{2}$D.6

分析 通过图象可知:|PF2|=|F1F2|=2c,设椭圆的方程为$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0),双曲线的方程为$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0),利用椭圆、双曲线的定义及离心率公式可得$\frac{{e}_{2}}{3}$+$\frac{3}{{e}_{1}}$的表达式,通过基本不等式即得结论.

解答 解:由题意可知:|PF2|=|F1F2|=2c,
设椭圆的方程为$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0),
双曲线的方程为$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0),
又∵|F1P|+|F2P|=2a1,|PF1|-|F2P|=2a2
∴|F1P|+2c=2a1,|F1P|-2c=2a2
两式相减,可得:a1-a2=2c,
则$\frac{{e}_{2}}{3}$+$\frac{3}{{e}_{1}}$=$\frac{c}{3{a}_{2}}$+$\frac{3{a}_{1}}{c}$=$\frac{9{a}_{1}{a}_{2}+{c}^{2}}{3c{a}_{2}}$=$\frac{9{a}_{2}({a}_{2}+2c)+{c}^{2}}{3c{a}_{2}}$=$\frac{1}{3}$($\frac{9{a}_{2}}{c}$+$\frac{c}{{a}_{2}}$+18)
≥$\frac{1}{3}$•(2$\sqrt{\frac{9{a}_{2}}{c}•\frac{c}{{a}_{2}}}$+18)=8.
当且仅当$\frac{9{a}_{2}}{c}$=$\frac{c}{{a}_{2}}$,即有e2=3时等号成立,
则$\frac{{e}_{2}}{3}$+$\frac{3}{{e}_{1}}$的最小值为8,
故选:B.

点评 本题考查椭圆和双曲线的定义和简单性质,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=2,|\overrightarrow b|=1$,且$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则$|\overrightarrow a-\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数m满足$\frac{3-i}{m+i}$=1-i(i为虚数单位),则m=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知p:x-3=0和q:(x-3)(x-4)=0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.$\overrightarrow a=(\sqrt{3}sin2x,cos2x),\overrightarrow b=(cos2x,-cos2x),f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$.
(1)若$x∈(\frac{7}{24}π,\frac{5}{12}π)$时,$\overrightarrow a•\overrightarrow b+\frac{1}{2}=-\frac{3}{5}$,求cos4x的值;
(2)将$f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$的图象向左移$\frac{π}{8}$,再将各点横坐标伸长为原来的2倍,纵坐标不变,得y=g(x),若关于g(x)+m=0在区间$[0,\frac{π}{2}]$上的有且只有一个实数解,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosθ\\ y=tsinθ\end{array}\right.$,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α-2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合A={x|x<5,x∈N},B={x|(x-2)(x-7)≤0},集合M=A∩B,则M的子集个数为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的三个顶点分别是A(5,3).B(7,-1).C(-1,5),求下列条件下的直线方程:
(1)BC边上的高线;
(2)中线BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx(x∈R)
(1)求函数f(x)的最小正周期;
(2)当函数f(x)取得最大值时,求自变量x的集合.

查看答案和解析>>

同步练习册答案