精英家教网 > 高中数学 > 题目详情
7.已知动点P(x,y)满足5$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$=|3x+4y-1|,则点P的轨迹是(  )
A.直线B.抛物线C.双曲线D.椭圆

分析 利用方程转化动点的几何意义,然后求解判断轨迹即可.

解答 解:动点P(x,y)满足5$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$=|3x+4y-1|,
可得:$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$=$\frac{|3x+4y-1|}{5}$,表示动点P(x,y)到(1,2)与到直线3x+4y-1=0距离相等,
又(1,2)不在直线3x+4y-1=0上,则点P的轨迹是以(1,2)为焦点以直线3x+4y-1=0为准线的抛物线.
故选:B.

点评 本题考查轨迹方程的求法,轨迹的判断,注意抛物线的定义域本题直线方程的区别,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在如图所示的正四棱柱ABCD-A1B1C1D1中,E、F分别是棱B1B、AD的中点,直线BF与平面AD1E的位置关系是(  )
A.平行B.相交但不垂直C.垂直D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠)乙(在横线上填甲或乙即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=-x2+1B.y=x-2C.y=log2xD.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x|y=lg(2-x)},集合B=[y|y=$\sqrt{x}$},则A∩B=[0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$ρcosθ=\frac{1}{2}$被圆ρ=1所截得的弦长为(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=|x|+{2^x}-\frac{1}{2}({x<0})$与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$({-∞,-\sqrt{2}})$B.$({-∞,\sqrt{2}})$C.$({-∞,2\sqrt{2}})$D.$({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x、y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.9D.-3

查看答案和解析>>

同步练习册答案