精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=|x|+{2^x}-\frac{1}{2}({x<0})$与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$({-∞,-\sqrt{2}})$B.$({-∞,\sqrt{2}})$C.$({-∞,2\sqrt{2}})$D.$({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$

分析 令f(-x)=g(x)在(0,+∞)上有解,根据函数图象得出a的范围.

解答 解:f(x)关于y轴对称的函数为h(x)=f(-x)=x+2-x-$\frac{1}{2}$(x>0),
令h(x)=g(x)得2-x-$\frac{1}{2}$=log2(x+a)(x>0),
则方程2-x-$\frac{1}{2}$=log2(x+a)在(0,+∞)上有解,
作出y=2-x-$\frac{1}{2}$与y=log2(x+a)的函数图象如图所示:

当a≤0时,函数y=2-x-$\frac{1}{2}$与y=log2(x+a)的函数图象在(0,+∞)上必有交点,符合题意;
若a>0,若两图象在(0,+∞)上有交点,则log2a$<\frac{1}{2}$,解得0$<a<\sqrt{2}$,
综上,a$<\sqrt{2}$.
故选:B.

点评 本题考查了方程解与函数图象的关系,函数图象的变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义在R上的周期为2的函数,满足f(2+x)=f(2-x),在[-3,-2]上是减函数,若A,B是锐角三角形的两个内角,则(  )
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知动点P(x,y)满足5$\sqrt{{(x-1)}^{2}{+(y-2)}^{2}}$=|3x+4y-1|,则点P的轨迹是(  )
A.直线B.抛物线C.双曲线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=2sin({2x+\frac{π}{6}})$,若将它的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则函数g(x)图象的一条对称轴的方程为(  )
A.$x=\frac{π}{3}$B.$x=\frac{π}{4}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)若四边形CAA1C1和BAA1B1都是正方形,求多面体CA1C1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$f(x)=\left\{{\begin{array}{l}{{2^x}-2,x≥0}\\{-{x^2}+3,x<0}\end{array}}\right.$,若f(a)=2,则a的取值为(  )
A.2B.-1或2C.±1或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{{a{x^2}}}{2}-({1+2a})x+2lnx({a>0})$在区间$({\frac{1}{2},1})$内有极大值,则a的取值范围是(  )
A.$({\frac{1}{e},+∞})$B.(1,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线y=$\frac{1}{16}$x2,A,B是该抛物线上两点,且|AB|=24,则线段AB的中点P离x轴最近时点的纵坐标为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出的n的值为(  )
A.10B.11C.12D.13

查看答案和解析>>

同步练习册答案