精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=$\frac{{a{x^2}}}{2}-({1+2a})x+2lnx({a>0})$在区间$({\frac{1}{2},1})$内有极大值,则a的取值范围是(  )
A.$({\frac{1}{e},+∞})$B.(1,+∞)C.(1,2)D.(2,+∞)

分析 求出函数的导数,问题转化为f′(x)在($\frac{1}{2}$,1)先大于0,再小于0,得到关于a的不等式组,解出即可.

解答 解:f′(x)=ax-(1+2a)+$\frac{2}{x}$=$\frac{{ax}^{2}-(2a+1)x+2}{x}$,(a>0,x>0)
若f(x)在($\frac{1}{2}$,1)有极大值,
则f′(x)在($\frac{1}{2}$,1)先大于0,再小于0,
则$\left\{\begin{array}{l}{f′(\frac{1}{2})>0}\\{f′(1)<0}\end{array}\right.$,解得:1<a<2,
故选:C.

点评 本题考查了函数的单调性、极值的意义,考查不等式以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠)乙(在横线上填甲或乙即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=|x|+{2^x}-\frac{1}{2}({x<0})$与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$({-∞,-\sqrt{2}})$B.$({-∞,\sqrt{2}})$C.$({-∞,2\sqrt{2}})$D.$({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行如图所示的程序框图,若输出的y值为$-\sqrt{2}$,则判断框中应填写的条件是(  )
A.i>5?B.i>3?C.i>6?D.i>4?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(1)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值;
(2)设A,B,C为△ABC的三个内角,$f({\frac{C}{2}})=1$,且C为锐角,c=$\sqrt{3}$,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足zi=1-$\sqrt{5}$i(i为虚数单位),则z等于(  )
A.-$\sqrt{5}$-iB.$\sqrt{5}$-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x、y满足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=3x-y,则z的最大值为(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.9D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=sinx-x,命题p:?x∈(0,$\frac{π}{2}}$),f(x)<0,则(  )
A.p是假命题,¬p::?x∈(0,$\frac{π}{2}}$),f(x)≥0B.p是假命题,¬p::?x∈(0,$\frac{π}{2}}$),f(x)≥0
C.P是真命题,¬p::?x∈(0,$\frac{π}{2}}$),f(x)≥0D.p是真命题,¬p::?x∈(0,$\frac{π}{2}}$),f(x)≥0

查看答案和解析>>

同步练习册答案