精英家教网 > 高中数学 > 题目详情
16、如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:B1C1⊥平面ABB1A1
(3)设E是CC1上一点,试确定E的位置使平面A1BD⊥平面BDE,并说明理由.
分析:(1)连接AB1与A1B相交于M,由三角形中位线定理,我们易得B1C∥MD,结合线面平行的判定定理,易得B1C∥平面A1BD;
(2)由于已知的几何体ABC-A1B1C1为直三棱柱,结合AB=BB1,AC1⊥平面A1BD,根据正方形的几何特征,我们易得到AB1⊥B1C1,BB1⊥B1C1,根据线面垂直的判定定理,即可得到B1C1⊥平面ABB1A1
(3)由图可知,当点E为CC1的中点时,平面A1BD⊥平面BDE,由已知易得DE∥AC1,结合AC1⊥平面AB1D,我们易得到DE⊥平面AB1D,进而根据面面垂直的判定定理得到结论.
解答:解:(1)证明:连接AB1与A1B相交于M,

则M为A1B的中点,连接MD,
又D为AC的中点,
∴B1C∥MD,
又B1C?平面A1BD,
∴B1C∥平面A1BD.(4分)
(2)∵AB=BB1
∴四边形ABB1A1为正方形,
∴AB1⊥A1B,
又∵AC1面A1BD,
∴AC1⊥A1B,
∴AB1⊥面AB1C1
∴AB1⊥B1C1
又在直棱柱ABC-A1B1C1中,BB1⊥B1C1
∴B1C1⊥平面ABB1A1.(8分)
(3)当点E为CC1的中点时,
平面A1BD⊥平面BDE,
∵D、E分别为AC、CC1的中点,
∴DE∥AC1
∵AC1⊥平面AB1D,
∴DE⊥平面AB1D,又DE?平面BDE,
∴平面AB1D⊥平面BDE.(14分)
点评:本题考查的知识眯是直线与平面平行的判定,直线与平面垂直的判定,平面与平面垂直的判定,熟练掌握空间直线与平面间平行和垂直的判定定理、性质定理、定义是解答此类问题的根本.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分别是AB、AA1、CC1的中点,P是CD上的点.
(1)求直线PE与平面ABC所成角的正切值的最大值;
(2)求证:直线PE∥平面A1BF;
(3)求直线PE与平面A1BF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=
a或2a
a或2a
时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.
(Ⅰ)求证:B1C1⊥平面ABB1A1
(Ⅱ)设E是CC1的中点,试求出A1E与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案