精英家教网 > 高中数学 > 题目详情
15.已知a∈R,命题“?x∈(0,+∞),等式lnx=a成立”的否定形式是(  )
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

分析 根据全称命题的否定是特称命题进行求解判断.

解答 解:命题是全称命题,则命题的否定是:
?x0∈(0,+∞),等式lnx0=a不成立,
故选:C

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知Rt△ABC的周长为定值l,则它的面积最大值为$\frac{3-2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<$\frac{π}{2}$)最小正周期为$\frac{π}{2}$,最大值为4,最小值为0,图象的一条对称轴为x=$\frac{π}{3}$
(1)求函数f(x)的解析式
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的程序框图所表示的算法功能是输出(  )
A.使1×2×4×6×…×n≥2017成立的最小整数n
B.使1×2×4×6×…×n≥2017成立的最大整数n
C.使1×2×4×6×…×n≥2017成立的最小整数n+2
D.使1×2×4×6×…×n≥2017成立的最大整数n+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100个括号内的最后一个数字为501.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$.
(1)求ω的值并求f(x)的最小值;
(2)△ABC中,a,b,c分别为△ABC的内角A,B,C的对边,且a=1,S△ABC=$\frac{\sqrt{3}}{4}$,f(A)=2,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,正三角形ABC的外接圆半径为2,圆心为O,PB=PC=2,D为AP上一点,AD=2DP,点D在平面ABC内的射影为圆心O.
(Ⅰ)求证:DO∥平面PBC;
(Ⅱ)求三棱锥O-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,则m=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案