分析 由an=2n+1可得数列{an}依次按1项、2项、3项、4项循环地分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,每一次循环记为一组.由于每一个循环含有4个括号,故第100个括号内各数是第25组中第4个括号内各数.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20,可得结论.
解答 解:由已知可知:原数列按1、2、3、4项循环分组,每组中有4个括号,每组中共有10项,
因此第100个括号应在第25组第4个括号,
该括号内四项分别为a247、a248、a249、a250,
因此第100个括号内的最后一个数字a250=501,
故答案为501.
点评 本题综合考查了等差数列,考查归纳推理的应用,本题关键是确定第100个括号里有几个数,第1个最后一个是几,这就需要找到规律.
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y+4)2=2 | B. | (x+1)2+(y-4)2=2 | C. | (x-1)2+(y-4)2=2 | D. | (x+1)2+(y+4)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 130万元 | B. | 130.25万元 | C. | 120万元 | D. | 100万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈(0,+∞),等式lnx=a不成立 | B. | ?x∈(-∞,0),等式lnx=a不成立 | ||
| C. | ?x0∈(0,+∞),等式lnx0=a不成立 | D. | ?x0∈(-∞,0),等式lnx0=a不成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com