14£®µÂ¹úÖøÃûÊýѧ¼ÒµÒÀû¿ËÀ×ÔÚÊýѧÁìÓò³É¾ÍÏÔÖø£¬ÒÔÆäÃûÃüÃûµÄº¯Êýf£¨x£©=$\left\{\begin{array}{l}{1£¬x¡ÊQ}\\{0£¬x¡Ê{∁}_{R}Q}\end{array}\right.$±»³ÆÎªµÒÀû¿ËÀ׺¯Êý£¬ÆäÖÐRΪʵÊý¼¯£¬QΪÓÐÀíÊý¼¯£¬Ôò¹ØÓÚº¯Êýf£¨x£©ÓÐÈçÏÂËĸöÃüÌ⣺¢Ùf£¨f£¨x£©£©=1£»¢Úº¯Êýf£¨x£©ÊÇżº¯Êý£»¢ÛÈÎȡһ¸ö²»ÎªÁãµÄÓÐÀíÊýT£¬f£¨x+T£©=f£¨x£©¶ÔÈÎÒâµÄx=Rºã³ÉÁ¢£»¢Ü´æÔÚÈý¸öµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬Ê¹µÃ¡÷ABCΪµÈ±ßÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâµÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö ¢Ù¸ù¾Ýº¯ÊýµÄ¶ÔÓ¦·¨Ôò£¬¿ÉµÃ²»¹ÜxÊÇÓÐÀíÊý»¹ÊÇÎÞÀíÊý£¬¾ùÓÐf£¨f£¨x£©£©=1£»¢Ú¸ù¾Ýº¯ÊýÆæÅ¼ÐԵ͍Ò壬¿ÉµÃf£¨x£©ÊÇżº¯Êý£»¢Û¸ù¾Ýº¯ÊýµÄ±í´ïʽ£¬½áºÏÓÐÀíÊýºÍÎÞÀíÊýµÄÐÔÖÊ£»¢ÜÈ¡x1=-$\frac{\sqrt{3}}{3}$£¬x2=0£¬x3=$\frac{\sqrt{3}}{3}$£¬¿ÉµÃA£¨$\frac{\sqrt{3}}{3}$£¬0£©£¬B£¨0£¬1£©£¬C£¨-$\frac{\sqrt{3}}{3}$£¬0£©£¬ÈýµãÇ¡ºÃ¹¹³ÉµÈ±ßÈý½ÇÐΣ®

½â´ð ½â£º¢Ù¡ßµ±xΪÓÐÀíÊýʱ£¬f£¨x£©=1£»µ±xΪÎÞÀíÊýʱ£¬f£¨x£©=0
¡àµ±xΪÓÐÀíÊýʱ£¬f£¨f£¨x£©£©=f£¨1£©=1£»
µ±xΪÎÞÀíÊýʱ£¬f£¨f£¨x£©£©=f£¨0£©=1
¼´²»¹ÜxÊÇÓÐÀíÊý»¹ÊÇÎÞÀíÊý£¬¾ùÓÐf£¨f£¨x£©£©=1£¬¹Ê¢ÙÕýÈ·£»
¢Ú¡ßÓÐÀíÊýµÄÏà·´Êý»¹ÊÇÓÐÀíÊý£¬ÎÞÀíÊýµÄÏà·´Êý»¹ÊÇÎÞÀíÊý£¬
¡à¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨-x£©=f£¨x£©£¬¹Ê¢ÚÕýÈ·£»
¢ÛÈôxÊÇÓÐÀíÊý£¬Ôòx+TÒ²ÊÇÓÐÀíÊý£» ÈôxÊÇÎÞÀíÊý£¬Ôòx+TÒ²ÊÇÎÞÀíÊý
¡à¸ù¾Ýº¯ÊýµÄ±í´ïʽ£¬ÈÎȡһ¸ö²»ÎªÁãµÄÓÐÀíÊýT£¬f£¨x+T£©=f£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£¬¹Ê¢ÛÕýÈ·£»
¢ÜÈ¡x1=-$\frac{\sqrt{3}}{3}$£¬x2=0£¬x3=$\frac{\sqrt{3}}{3}$£¬¿ÉµÃf£¨x1£©=0£¬f£¨x2£©=1£¬f£¨x3£©=0
¡àA£¨$\frac{\sqrt{3}}{3}$£¬0£©£¬B£¨0£¬1£©£¬C£¨-$\frac{\sqrt{3}}{3}$£¬0£©£¬Ç¡ºÃ¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ìâ¸ø³öÌØÊ⺯Êý±í´ïʽ£¬Çóº¯ÊýµÄÖµ²¢ÌÖÂÛËüµÄÆæÅ¼ÐÔ£¬×ÅÖØ¿¼²éÁËÓÐÀíÊý¡¢ÎÞÀíÊýµÄÐÔÖʺͺ¯ÊýµÄÆæÅ¼ÐÔµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª{an}Âú×㣺¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓУ¬a1+a2+a+3¡­+an=$\frac{1}{2}$£¨an2+n£©£¬ÇÒan-1+an¡Ù1£¨n¡Ý2£©
£¨1£©ÈôÊýÁеÄǰnÏîºÍSn£¬Ö¤Ã÷£ºa13+a23+a33+¡­+an3=Sn2
£¨2£©ÉèÊýÁÐ{bn}Âú×ãb1=$\frac{1}{2}$£¬bn+1=$\frac{1}{{a}_{2015}}$bn2+bn£¬ÇóÖ¤£ºbn£¼1£¨n¡ÊN*£¬n¡Ü2015£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¡÷ABCÖУ¬Èý¸ö½ÇA£¬B£¬CËù¶ÔµÄ±ßa£¬b£¬cÂú×ãa2+b2=c2-$\sqrt{3}$ab£¬ÔòC=£¨¡¡¡¡£©
A£®150¡ãB£®135¡ãC£®120¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÇúÏß$y=\frac{1}{2}{x^2}$ÓëÖ±Ïß$y=x+\frac{3}{2}$µÄ½»µã×ø±êÊÇ£¨3£¬$\frac{9}{2}$£©£¬£¨-1£¬$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª$f£¨x£©=\left\{{\begin{array}{l}{{2^{x-2}}}\\{a-x}\end{array}}\right.$ $\begin{array}{l}{x£¾1}\\{0¡Üx£¼1}\end{array}$£¬ÇÒ$f£¨{\frac{f£¨2£©}{2}}£©=\frac{1}{2}$£¬ÔòʵÊýa=£¨¡¡¡¡£©
A£®-1B£®0C£®$\frac{1}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÖ±Ïßx=mÓ뺯Êýf£¨x£©=sinx£¬º¯Êýg£¨x£©=sin£¨$\frac{¦Ð}{2}$-x£©µÄͼÏó·Ö±ðÏཻÓÚM¡¢NÁ½µã£¬Ôò|MN|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}-1$C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¸´Êýz=1-i£¬Ôò$\frac{z}{\bar z-1}$=£¨¡¡¡¡£©
A£®-1+iB£®-1-iC£®1-iD£®1+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÏÈÔĶÁÏÂÃæÎÄ×Ö£º
¡°Çó$\sqrt{1+\sqrt{1+\sqrt{1+¡­}}}$µÄֵʱ£¬²ÉÓÃÁËÈçϵķ½Ê½£ºÁî$\sqrt{1+\sqrt{1+\sqrt{1+¡­}}}$=x£¬ÔòÓÐx=$\sqrt{1+x}$£¬Á½±ßƽ·½£¬µÃx2=1+x£¬½âµÃx=$\frac{{1+\sqrt{5}}}{2}$£¨¸ºÖµÉáÈ¥£©¡±£®ÓÃÀà±ÈµÄ·½·¨¿ÉÒÔÇóµÃ£ºµ±0£¼q£¼1ʱ£¬1+q+q2+q3+¡­µÄֵΪ$\frac{1}{1-q}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬Ö±ÏßA1CÓëBDËù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A£®30¡ãB£®45¡ãC£®60¡ãD£®90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸