精英家教网 > 高中数学 > 题目详情

正方形ABCD的边长为1,分别取边BC,CD的中点E,F,连接AE,EF,AF,以AE,EF,AF为折痕,折叠这个正方形,使点B,C,D重合于一点P,得到一个四面体,如图所示.
(1)求证:AP⊥EF;
(2)求证:平面APE⊥平面APF;
(3)求三棱锥P-AEF的体积.

(本小题满分14分)
证明:(1)∵∠APE=∠APF=90°,
PE∩PF=P,
∴PA⊥平面PEF.…(3分)
又EF?平面PEF,
AP⊥EF;…5分
(2)∵∠APE=∠EPF=90°,AP∩PF=P,
∴PE⊥平面APF.…(8分)
又PE?平面APE,
∴平面APE⊥平面APF.…(10分)
(3)由(1)知PA⊥平面PEF,
==.…(14分)
分析:(1)通过∠APE=∠APF=90°,证明PA⊥平面PEF,然后证明AP⊥EF;
(2)利用∠APE=∠EPF=90°,证明PE⊥平面APF,然后证明平面APE⊥平面APF;
(3)利用,求出几何体的体积.
点评:本小题主要考查空间线面关系,体积的求法,考查空间想像能力和推理论证能力,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2,E为CD的中点,则
AE
BD
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为1,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE;
(3)求三棱锥G-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为4,中心为M,球O与正方形ABCD所在的平面相切于M点,过点M的球的直径另一端点为N,线段NA与球O的球面的交点为E,且E恰为线段NA的中点,则球O的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长是4,对角线AC与BD交于O.将正方形ABCD沿对角线BD折成60°的二面角,并给出下面结论:①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=
3
4
,则其中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知中心为O的正方形ABCD的边长为2,点M,N分别为线段BC,CD上的两个不同点,且|
MN
|=1,则
OM
ON
的取值范围是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步练习册答案