【题目】已知
件产品中有
件是次品.
(1)任意取出
件产品作检验,求其中至少有
件是次品的概率;
(2)为了保证使
件次品全部检验出的概率超过
,最少应抽取几件产品作检验?
【答案】任意取出
件产品作检验,至少有
件是次品的概率是
;为了保证使
件次品全部检验出的概率超过
,最少应抽取9件产品作检验。
【解析】
(1)先求出任取3件的方法数,再求出任取的3件中没有次品的方法数,相减即得至少有一件次品的方法数,由此可得所求概率;
(2)即抽取的产品中至少有3件次品的概率超过0.6,列式求解.
(1)从10件产品中任取3件的方法数为
,而3件产品中没有次品的方法数是
,从而至少有1件次品的方法数是120-35=85,所求概率为
.
(2)设应抽取
件产品,则
,即
,
,∵
,∴
或10.至少抽取9件才能满足题意.
∴任意取出
件产品作检验,至少有
件是次品的概率是
,为了保证使
件次品全部检验出的概率超过
,最少应抽取9件产品作检验.
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),
表示购机的同时购买的维修服务次数.
(1)若
=10,求y与x的函数解析式;
(2)若要求“维修次数不大于
”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
中,
,当
时,
的前
项和
满足
(1)求
的表达式;
(2)设
,数列
的前
项和为
,求
;
(3)是否存在正整数
,使得
成等比数列?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在图1所示的梯形
中,
,
于点
,且
.将梯形
沿
对折,使平面
平面
,如图2所示,连接
,取
的中点
.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点
,使得直线
平面
?若存在,试确定点
的位置,并给予证明;若不存在,请说明理由;
(3)设
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com