分析 (1)求出$\overrightarrow{B{C}_{1}}$=((-2,0,2),$\overrightarrow{{D}_{1}E}$=((2,1,0),利用BC1与D1E所成角的余弦值=|cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{{D}_{1}E}$>|,可得结论;
(2)设N(0,2,z),则$\overrightarrow{EN}$=(-2,-1,z),$\overrightarrow{D{B}_{1}}$=(2,2,2),利用向量的数量积公式,可得结论.
解答 解:(1)如图所示,建立坐标系,B(2,2,0),C1(0,2,2),D1(0,0,0),E(2,1,0),
则$\overrightarrow{B{C}_{1}}$=((-2,0,2),$\overrightarrow{{D}_{1}E}$=((2,1,0),
∴BC1与D1E所成角的余弦值=|cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{{D}_{1}E}$>|=|$\frac{-4}{\sqrt{8}•\sqrt{5}}$|$\frac{\sqrt{10}}{5}$;
(2)设N(0,2,z),则$\overrightarrow{EN}$=(-2,-1,z),$\overrightarrow{D{B}_{1}}$=(2,2,2),
∵EN⊥DB1,
∴-4-2+2z=0,∴z=3>2,
∴棱CC1不存在一点N使得EN⊥DB1.
点评 本题考查棱柱的结构特征,考查向量知识的运用,正确求出向量的坐标是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当x>0且x≠1时,lnx+$\frac{1}{lnx}$≥2 | B. | 当x>0时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2 | ||
| C. | 当x≥2时,x+$\frac{1}{x}$的最小值为2 | D. | 当0<x≤π时,sinx+$\frac{4}{sinx}$最小值为4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] | 合计 |
| 频数 | b | |||||
| 频率 | a | 0.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com