【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于P、Q两点.
(1)求曲线C的直角坐标方程及直线l的参数方程;
(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
【答案】(1)曲线的直角坐标方程为;直线的参数方程为(为参数))(2)当时,取得最小值为
【解析】
(1)由求得曲线的直角坐标方程;先求出曲线与直线的交点的坐标,即可得到的中点,进而求解即可;
(2)由(1),将直线的参数方程代入到曲线的直角坐标方程中,由参数的几何意义可得,进而求解即可.
(1)由题,因为,即,
因为,
所以,即,
则曲线的直角坐标方程为,
因为射线交曲线于点,所以点的极坐标为,
则点的直角坐标为,所以的中点为,
所以倾斜角为且过点的直线的参数方程为(为参数).
(2)将直线的参数方程(为参数)代入曲线的方程中,
整理可得,
设、对应的参数值分别是、,则有,
则,
因为,当,即时,取得最小值为
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面积为6,求BC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列的首项为,且当数列是公比为的等比数列时,则称数列为“数列”.
(1)已知数列的通项公式为,证明:数列为“数列”;
(2)若数列为“数列”,且对任意,、、成等差数列,公差为.
①求与间的关系;
②若数列为递增数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣sinx(a∈R).
(1)当时,f(x)0恒成立,求正实数a的取值范围;
(2)当a≥1时,探索函数F(x)f(x)﹣cosx+a﹣1在(0,π)上的零点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=1.
(1)求C1的极坐标方程,并求C1与C2交点的极坐标;
(2)若曲线C3:θ=β(ρ>0)与C1,C2的交点分别为M,N,求|OM||ON|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过椭圆的左、右焦点和短轴的端点(点在点上方).为圆上的动点(点不与重合),直线分别与椭圆交于点,其中点构成四边形.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com