精英家教网 > 高中数学 > 题目详情

【题目】已知函数上的最大值为.

1)求的解析式;

2)讨论的零点的个数.

【答案】12有且仅有个零点

【解析】

1)由,求导得到,根据函数上的最大值为,利用唯一的极值点为最值点求解.

2)由(1)得到,求导,设,分 四种情况用导数法结合零点存在定理求解.

1)由,得

,得;令,得

的单调递增区间是,单调递减区间是.

处有极大值,也是的最大值,

所以,∴

.

2)∵

i)当时,∴,所以单调递减.

,从而上存在唯一零点.也即在上存在唯一零点.

ii)当时,,所以上单调递减,

因为

所以存在,且在,在

所以上的最大值,

又因为

所以上恒大于零,无零点.

iii)当时,,所以上单调递减.

,所以上单调递增.

所以上存在唯一零点.

iiii)当时,

所以上单调递减,所以,即.

上单调递减,

因为,所以上单调递增,

因为

所以无零点,

综上,有且仅有个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.

1)求出甲考生正确完成题数的概率分布列,并计算数学期望;

2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形是底角为的等腰梯形,且,沿直线翻折成,所成二面角的平面角为,则(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆,椭圆上一点到左焦点的距离的取值范围为.

1)求椭圆的方程;

2分别与椭圆相切,且,如图,围成的矩形的面积记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在极坐标系中,,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧

1)写出曲线的极坐标方程;

2)曲线构成,若曲线的极坐标方程为),写出曲线与曲线的所有公共点(除极点外)的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知椭圆的离心率为,过点的直线交椭圆两点,,且当直线垂直于轴时,.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,求弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,BD为四边形的一条对角线,且,将沿BD向上翻折,当点A在平面BCD内的投影恰好为的外心E时,设直线AE与平面ABCACDABD的夹角分别为,则(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于PQ两点.

(1)求曲线C的直角坐标方程及直线l的参数方程;

(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

查看答案和解析>>

同步练习册答案