精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,AA1=3,点F在棱B1B上运动.

(1)若三棱锥B1﹣A1D1F的体积为 时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

【答案】
(1)解:∵在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,

= =1,

∵AA1=3,点F在棱B1B上运动,三棱锥B1﹣A1D1F的体积为

×B1F= =

∴BF=3﹣2=1,

以D为原点,DA为x轴,DC为y轴,

DD1为z轴,建立空间直角坐标系,

由A( ,0,0),D(0,0,0),

D1(0,0,3),F( , ,1),

=(﹣ ,0,0),

=( , ,-2),

设异面直线AD与D1F所成的角为θ,

则cosθ= = = ,∴θ=60°.

∴异面直线AD与D1F所成的角为60°


(2)解:C(0, ,0), =(﹣ , ,0), =( , ,-2),

=﹣2+2+0=0,

∴异面直线AC与D1F所成的角为90°.


【解析】(1)求出BF=1,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD与D1F所成的角.(2)求出 =(﹣ , ,0), =( , ,-2),利用向量法能求出异面直线AC与D1F所成的角的大小.
【考点精析】利用棱柱的结构特征和异面直线及其所成的角对题目进行判断即可得到答案,需要熟知两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形;异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)= ,给出下列命题:
①F(x)=|f(x)|;
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;
④当a>0时,函数y=F(x)﹣2有4个零点.
其中正确命题的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;

(2)若在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各函数在其定义域中,既是奇函数,又是增函数的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和为 ,数列满足: ,数列的前n项和为

(1)求数列的通项公式及前n项和;

(2)求数列的通项公式及前n项和;

(3)记集合,若M的子集个数为16,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若Ai(i=1,2,3,…,n)是△AOB所在平面内的点,且 = ,给出下列说法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)点A和点Ai一定共线
·(4)向量 在向量 方向上的投影必定相等
其中正确的个数是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=lg(3﹣4x+x2)的定义域为M,当x∈M时,则f(x)=2x+2﹣3×4x的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式2x2﹣x﹣3>0解集为(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

查看答案和解析>>

同步练习册答案