分析 (1)直接由数量积的坐标运算求得f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1,利用辅助角公式化积后求得f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1的最小正周期;
(2)在(1)中求出的函数解析式内,由x的范围求得f(x)的最大值,并得到f(x)取最大值时x的值.
解答 解:(1)∵$\overrightarrow{a}$=(2cosx,cosx),$\overrightarrow{b}$=(cosx,2sinx),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1=2cos2x+2sinxcosx-1=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$.
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1的最小正周期为$\frac{2π}{2}=π$;
(2)$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,
∵x∈[$\frac{π}{8}$,$\frac{5π}{8}$],∴2x+$\frac{π}{4}$∈[$\frac{π}{2},\frac{3π}{2}$].
∴当2x+$\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{8}$时,$f(x)_{max}=\sqrt{2}$.
点评 本题考查平面向量的数量积运算,考查了三角函数最值的求法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a2+b2≠0,则a≠0,b≠0 | B. | 若a2+b2≠0,则a≠0或b≠0 | ||
| C. | 若a2+b2=0,则a≠0,b≠0 | D. | 若a2+b2=0,则a≠0或b≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com