精英家教网 > 高中数学 > 题目详情

【题目】设函数为常数, 为自然对数的底数).

1)当时,求函数的单调区间;

2)若函数内存在三个极值点,求实数的取值范围.

【答案】(1) 的单调递减区间为,单调递增区间为2.

【解析】试题分析:(1)第(1)问,直接求导,再求函数的单调区间. (2)第(2)问,对k进行分类讨论,求出每一种情况下函数的单调性,再分析函数内存在三个极值点的条件从而得到实数k的取值范围.

试题解析:

(1) 函数的定义域为..

可得,所以当时, ;当时, .

的单调递减区间为,单调递增区间为

2由(1)知,当时,函数内单调递减,在内单调递增,故内仅存在一个极值点

时,令 ,依题函数与函数 的图象有两个横坐标不等于2的交点.

,当 ,则上单调递减,

,则上单调递增;

所以当时,存在使得

且当,当 ,当,当,此时存在极小值点和极大值点

同理,当时,存在使得,此时存在极小值点和极大值点.

综上,函数内存在三个极值点时,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ ,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.
(I)求a、b的值;
(Ⅱ)当x>1时,不等式f(x)> 恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中点.

(1)求证:AE∥平面PBC;
(2)若直线AE与直线BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)经过点P(﹣2,0)与点(1,1).
(1)求椭圆的方程;
(2)过P点作两条互相垂直的直线PA,PB,交椭圆于A,B.
①证明直线AB经过定点;
②求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.

学期

1

2

3

4

5

6

总分(分)

512

518

523

528

534

535

(1)请根据上表提供的数据,用相关系数说明的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);

(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.

参考公式:

相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2006表示成5个正整数之和. 记. 问:

(1)取何值时,S取到最大值;

(2)进一步地,对任意,当取何值时,S取到最小值. 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月31日下午,关于修改个人所得税法的决定经十三届全国人大常委会第五次会议表决通过。2018年10月1日起施行最新起征点和税率。个税起征点提高至每月5000元.设个人月应纳税所得额为元,个人月工资收入为元,三险金(养老保险、失业保险、医疗保险、住房公积金)及其它各类免税额总计为元,则.设月应纳税额为,个税的计算方式一般是分级计算求总和 (如图表所示,共分7级).比如:小陈的应纳税所得额为元,月应交纳税额为元.

税级

月应纳税所得额

税率

1

中不超过3000元的部分

3%

2

中超过3000元至12000元(含12000元)的部分

10%

3

中超过12000元至25000元(含25000元)的部分

20%

4

中超过25000元至35000元(含35000元)的部分

25%

5

中超过35000元至55000元(含55000元)的部分

30%

6

中超过55000元至80000元(含80000元)的部分

35%

7

中超过80000元的部分

45%

(1)小王的应纳税所得额元,求

(2)小张的应纳税所得额元,若元,求

(3)当时,写出的解析式(请写成分段函数的形式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求a的值和函数f(x)的定义域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

同步练习册答案