精英家教网 > 高中数学 > 题目详情
19.已知A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$+$\frac{y}{b}$=1},若A∩B是单元素集,则a,b满足的关系式为a2+b2=a2b2

分析 A中方程表示圆心为原点,半径为1的圆上点集,B中方程表示一条直线,根据A与B的交集为单元素集,得到直线与圆相切,即可确定出a与b满足的关系式.

解答 解:A中x2+y2=1,表示圆心为(0,0),半径为1的圆,
B中$\frac{x}{a}$+$\frac{y}{b}$=1,表示直线bx+ay-ab=0,
∵A∩B是单元素集,
∴直线与圆相切,即圆心到直线的距离d=r,
∴$\frac{|ab|}{\sqrt{{a}^{2}+{b}^{2}}}$=1,整理得:a2+b2=a2b2
故答案为:a2+b2=a2b2

点评 此题考查了交集及其运算,以及直线与圆相切的性质,根据题意得出直线与圆相切是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若(3-2a)${\;}^{-\frac{1}{3}}$>(a-1)${\;}^{-\frac{1}{3}}$,实数a的取值范围为{a|a<1或$\frac{4}{3}$<a<$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C的对边分别是a,b,c,若c=2a,b=4,$cosB=\frac{1}{4}$,a=2;c=4;△ABC的面积为$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题:
①函数y=sinx在第一象限是增函数;
②函数y=|cosx+$\frac{1}{2}$|的最小正周期是π;
③函数y=tan$\frac{x}{2}$的图象的对称中心是(kπ,0),k∈Z;
④函数y=lg(1+2cos2x)的递减区间是[kπ,kπ+$\frac{π}{4}$),k∈Z;
⑤函数y=3sin(2x+$\frac{π}{3}$)的图象可由函数y=3sin2x的图象按向量$\overrightarrow{a}$=($\frac{π}{3}$,0)平移得到.
其中正确的命题序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=$\frac{1}{2}$x2-2x+4的定义域和值域都是[b,2b],求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanx=2.
(1)求$\frac{cosx+sinx}{cosx-sinx}$的值.
(2)求$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x的值.
(3)求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x2-2x,g(x)=mx+2,若对任意的x1∈[-1,2],存在x0∈[-1,2],使得g(x1)=f(x0),则实数m的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[-1,$\frac{1}{2}$]C.[-$\frac{1}{2}$,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A(-1,0),B(1,0),C(0,1),直线y=x+b将△ABC分割为面积相等的两部分,则b=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\sqrt{2}$-1D.1-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知|$\overrightarrow{a}$|=4,$\vec e$为单位向量,当它们的夹角为60°时,$\vec a$在$\vec e$方向上的投影为2.

查看答案和解析>>

同步练习册答案