精英家教网 > 高中数学 > 题目详情
4.已知tanx=2.
(1)求$\frac{cosx+sinx}{cosx-sinx}$的值.
(2)求$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x的值.
(3)求2sin2x-sinxcosx+cos2x的值.

分析 (1)原式分子分母除以cosx,利用同角三角函数间基本关系化简后,将tanx的值代入计算即可求出值;
(2)原式分母看做“1”,利用同角三角函数间的基本关系化简后,将tanx的值代入计算即可求出值;
(3)原式分母看做“1”,利用同角三角函数间的基本关系化简后,将tanx的值代入计算即可求出值.

解答 解:(1)∵tanx=2,
∴原式=$\frac{1+tanx}{1-tanx}$=$\frac{1+2}{1-2}$=-3;
(2)∵tanx=2,
∴原式=$\frac{\frac{2}{3}si{n}^{2}x+\frac{1}{4}co{s}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{\frac{2}{3}ta{n}^{2}x+\frac{1}{4}}{ta{n}^{2}x+1}$=$\frac{\frac{8}{3}+\frac{1}{4}}{4+1}$=$\frac{7}{12}$;
(3)∵tanx=2,
∴原式=$\frac{2si{n}^{2}x-sinxcosx+co{s}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2ta{n}^{2}x-tanx+1}{ta{n}^{2}x+1}$=$\frac{8-2+1}{4+1}$=$\frac{7}{5}$.

点评 此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知tan($\frac{π}{6}$-α)=-2,α∈[$\frac{π}{6}$,$\frac{7π}{6}$],则sin$\frac{α}{2}$cos$\frac{α}{2}$+$\sqrt{3}$cos2$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$=(  )
A.-$\frac{2\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列$\frac{3}{2}$,-$\frac{5}{4}$,$\frac{7}{8}$,-$\frac{9}{16}$,…的一个通项公式为(  )
A.an=(-1)n$\frac{{2}^{n}+1}{{2}^{n}}$B.an=(-1)n$\frac{2n+1}{{2}^{n}}$
C.an=(-1)n+1$\frac{{2}^{n}+1}{{2}^{n}}$D.an=(-1)n+1$\frac{2n+1}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)的图形关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3(a为实数),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$+$\frac{y}{b}$=1},若A∩B是单元素集,则a,b满足的关系式为a2+b2=a2b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某商店糖果柜台经过一段时间的观察,发现将一些糖果适当搭配、混合后销售,销售较好,所以准备将单价为a元/千克和单价为b元/千克的两种糖果混合在一起,按$\frac{a+b}{2}$元/千克的单价出售.小蒋:将总售价相同的两类糖果混合在一起.小赵:将总质量相同的两类糖果混合在一起.该听谁的获利较多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.因式分解:(x2-7x-6)(x2+x-6)+12x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=(2a2-3a+2)ax是指数函数,则a的值为(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.1 或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某建筑工地在一块唱AM=30米,宽AN=20米的矩形地块AMPN上施工,规划建设占地如图中矩形ABCD的学生公寓,要求顶点C在地块的对角线MN上,B,D分别在边AM,AN上,假设AB长度为x米.
(1)要是矩形学生公寓ABCD的面积不小于144平方米,AB的长度应在什么范围?
(2)长度AB和宽度AD分别为多少米是矩形学生公寓ABCD的面积最大?最大值是多少平方米?

查看答案和解析>>

同步练习册答案