精英家教网 > 高中数学 > 题目详情
12.设f(x)是定义在区间[-1,1]上的偶函数,g(x)与f(x)的图形关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3(a为实数),求f(x)的解析式.

分析 先设f(x)的图象上任意点(x,f(x)),求出它关于直线x=1的对称点的坐标,由题意给出x的范围,再代入g(x)的解析式化简,再由偶函数的关系式求出另外一部分的解析式,最后用分段函数的形式表示出来

解答 解:(1)设f(x)的图象上任意点(x,f(x)),
它关于直线x=1的对称点(2-x,f(x))在g(x)的图象上,
当x∈[-1,0]时,2-x∈[2,3],且g(x)=2a(x-2)-4(x-2)3
∴f(x)=g(2-x)=-2ax+4x3
当x∈(0,1]时,-x∈[-1,0),∴f(-x)=2ax-4x3
又∵f(x)是定义在x∈[-1,1]上的偶函数,
∴f(x)=2ax-4x3
则f(x)=$\left\{\begin{array}{l}{-2ax+4{x}^{3},-1≤x≤0}\\{2ax-4{x}^{3},0<x≤1}\end{array}\right.$.

点评 本题考查了函数的对称性,奇偶性的综合应用,考查函数的解析式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.分别用列举法和描述法表示方程组$\left\{\begin{array}{l}{x+y=1}\\{x-y=-1}\end{array}\right.$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-bx2+2cx的导函数的图象关于直线x=2 对称.
(Ⅰ)求b的值;
(Ⅱ)若函数f(x)无极值,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)求值:$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-si{n}^{2}50°}}$.
(2)已知sinθ+2cosθ=0,求$\frac{cos2θ-sin2θ}{{1+{{cos}^2}θ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列命题:
①函数y=sinx在第一象限是增函数;
②函数y=|cosx+$\frac{1}{2}$|的最小正周期是π;
③函数y=tan$\frac{x}{2}$的图象的对称中心是(kπ,0),k∈Z;
④函数y=lg(1+2cos2x)的递减区间是[kπ,kπ+$\frac{π}{4}$),k∈Z;
⑤函数y=3sin(2x+$\frac{π}{3}$)的图象可由函数y=3sin2x的图象按向量$\overrightarrow{a}$=($\frac{π}{3}$,0)平移得到.
其中正确的命题序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设{an}是等差数列,且a2=3,a6=11,则a1+a2+a3+a4+a5+a6+a7等于(  )
A.13B.35C.49D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanx=2.
(1)求$\frac{cosx+sinx}{cosx-sinx}$的值.
(2)求$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x的值.
(3)求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.(m+i)3∈R,则实数m的值为(  )
A.±2$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\sqrt{3}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算.$\frac{tan(-150°)cos(-210°)cos(-420°)}{cot(-600°)sin(-1050°)}$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案