【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求t的最小值.
【答案】(1) ;(2) .
【解析】试题分析:(1) 由题意,则圆的方程为,又,直线的方程为,直线与圆相交得到的弦长为,则进而可得椭圆的方程.(2) 设直线的方程为,联立直线PA和椭圆方程,可得点的坐标是,故直线的斜率为, ,所以.将线段BC,OP的长度用t来表示,则 , ,所以,整理得,又, ,所以.
试题解析:(Ⅰ)因为以为直径的圆过点,所以,则圆的方程为,
又,所以,直线的方程为,直线与圆相交得到的
弦长为,则所以,
所以椭圆的方程为.
(Ⅱ)设直线的方程为,
由
整理得,
解得: , ,则点的坐标是,
故直线的斜率为,由于直线的斜率为,
所以 ,所以.
, ,
所以,
,所以,
整理得,又, ,所以.
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是y1 , y2万元,它们与投入资金x万元的关系分别为y1=m +a,y2=bx,(其中m,a,b都为常数),函数y1 , y2对应的曲线C1 , C2如图所示.
(1)求函数y1与y2的解析式;
(2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如下表:
(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程;
(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;
(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱与四边形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点, .
(I)求证:GM//平面CDE;
(II)求证:平面ACE⊥平面ACF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的图象与y轴的交点为( ),它在y轴右侧的第一个最高点和最低点分别为(x0 , 3),(x0+2π,﹣3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某社区居民的业余生活状况,研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式 | 看电视 | 看书 | 合计 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合计 | 20 | 60 | 80 |
(1)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X.求X的数学期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点.
(1)求椭圆C的方程;
(2)是否存在过点的直线与椭圆C相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com