精英家教网 > 高中数学 > 题目详情

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

【答案】(Ⅰ); (Ⅱ)见解析; (Ⅲ).

【解析】试题分析:(Ⅰ)设“所选取的2名学生选考物理、化学、生物科目数量相等”为事件的概率,从而得到选考物理、化学、生物科目数量不相等的概率;

(Ⅱ)由题意得到随机变量的取值,计算其概率,列出分布列,根据公式求解数学期望.

(Ⅲ)由题意得所调查的学生中物理、化学、生物选考两科目的学生的人数,得到相应的概率,即可求解“”的概率.

试题解析:(Ⅰ)记“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A

 所以他们选考物理、化学、生物科目数量不相等的概率为

    

(Ⅱ)由题意可知X的可能取值分别为0,1,2

  , 

 

 从而X的分布列为

X

0

1

2

P

 

(Ⅲ)所调查的50名学生中物理、化学、生物选考两科目的学生有25名

 相应的概率为,所以  

 所以事件“”的概率为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)直线为曲线处的切线,求实数

(Ⅱ)若,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)求椭圆 的长轴和短轴的长、离心率、焦点和顶点的坐标.
(2)求焦点在y轴上,焦距是4,且经过点M(3,2)的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC=4,且sinB,sinA,sinC成等差数列,建立适当的直角坐标系,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C.

(I)求椭圆E的方程;

(II)若三角形ABC的面积不大于四边形OBPC的面积,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如下表:

(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;

(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程

(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且

(Ⅰ)当时,证明:平面平面

(Ⅱ)当平面与平面所成的二面角的正弦值为时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案