【题目】在四棱锥中,底面为平行四边形, , , , 点在底面内的射影在线段上,且, , 为的中点, 在线段上,且.
(Ⅰ)当时,证明:平面平面;
(Ⅱ)当平面与平面所成的二面角的正弦值为时,求四棱锥的体积.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:(Ⅰ)接,作交于点,则四边形为平行四边形,在中由余弦定理得,由勾股定理可得,在中, , 分别是, 的中点,结合中位线及平行的传递性可得,故可得平面,由线面平行判定定理可得结论;(Ⅱ)以为坐标原点, , , 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系,利用空间向量与二面角平面角之间关系可得: ,由棱锥的体积公式可得结果.
试题解析:(Ⅰ)证明:连接,作交于点,则四边形为平行四边形,
,在中, , , ,由余弦定理得.
所以,从而有.
在中, , 分别是, 的中点,
则, ,
因为,所以.
由平面, 平面,
得,又, ,
得平面,又平面,
所以平面平面.
(Ⅱ)以为坐标原点, , , 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系,则, , , , , .
平面的一个法向量为.
设平面的法向量为,
由, ,得令,得.
由题意可得, ,
解得,
所以四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】已知两点A(2,3)、B(4,1),直线l:x+2y﹣2=0,在直线l上求一点P.
(1)使|PA|+|PB|最小;
(2)使|PA|﹣|PB|最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;
(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的图象与y轴的交点为( ),它在y轴右侧的第一个最高点和最低点分别为(x0 , 3),(x0+2π,﹣3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+1)= ,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某社区居民的业余生活状况,研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
休闲方式 | 看电视 | 看书 | 合计 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合计 | 20 | 60 | 80 |
(1)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X.求X的数学期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面为平行四边形, , , , 点在底面内的射影在线段上,且, ,M在线段上,且.
(Ⅰ)证明: 平面;
(Ⅱ)在线段AD上确定一点F,使得平面平面PAB,并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)若BE=3,求几何体BEC﹣AFD的体积;
(2)求三棱锥A﹣CDF的体积的最大值,并求此时二面角A﹣CD﹣E的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com