精英家教网 > 高中数学 > 题目详情

【题目】为调查某社区居民的业余生活状况,研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:

休闲方式
性别

看电视

看书

合计

10

50

60

10

10

20

合计

20

60

80


(1)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X.求X的数学期望和方差.

P(X2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附:X2=

【答案】
(1)解:根据样本提供的2×2列联表得:X2= ≈8.889>6.635;

所以有99%的把握认为“在20:00﹣22:00时间段居民的休闲方式与性别有关.


(2)解:由题意得:X~B(3, ),所以E(X)=3× = ,D(X)=3× × =
【解析】(1)根据样本提供的2×2列联表,得当H0成立时,K2≥6.635的概率约为0.01,由此能推导出有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系.(2)由题意得:X~B(3, ),由此能求出X的数学期望和方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C.

(I)求椭圆E的方程;

(II)若三角形ABC的面积不大于四边形OBPC的面积,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且

(Ⅰ)当时,证明:平面平面

(Ⅱ)当平面与平面所成的二面角的正弦值为时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=( x , 数列{bn}满足条件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式x2﹣ax﹣b<0的解集是{x|2<x<3},求不等式bx2﹣ax﹣1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明 PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求VBEFD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1表示焦点在y轴上的椭圆;命题q:双曲线 =1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.

查看答案和解析>>

同步练习册答案