精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=3,AA1=3 ,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1 . (Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A1﹣AC﹣B的余弦值.

【答案】(Ⅰ)证明:由题意tan∠ABD= = ,tan∠AB1B= = , ∵0<∠ABD< ,0<∠AB1B< ,∴∠ABD=∠AB1B,
∴∠ABD+∠BAB1=∠AB1B+∠BAB1= ,则AB1⊥BD.
又CO⊥侧面ABB1A1 , AB1⊥CO.
又BD与CO交于点O,AB1⊥平面CBD,
又BC平面CBD,BC⊥AB1
(Ⅱ)解:如图,以O为原点,分别以OD,OB1 , OC所在的直线为x,y,z轴,建立空间直角坐标系Oxyz,
,B( ,0,0),C(0,0, ),B1 ),

设平面ABC的法向量为 =(x,y,z),
,令x=1,可得 =(1, ,﹣ )是平面ABC的一个法向量.
设平面A1AC的法向量为 =(x,y,z),
,令x=2,可得 =(2,﹣ )是平面A1AC的一法向量.
设二面角A1﹣AC﹣B的平面角为α,则cosα=|cos< >|=| |= =
二面角A1﹣AC﹣B的余弦值为

【解析】(Ⅰ)由题意求得∠ABD=∠AB1B,且∠ABD+∠BAB1=∠AB1B+∠BAB1= ,则AB1⊥BD.再由CO⊥侧面ABB1A1 , 得AB1⊥CO.结合线面垂直的判定可得AB1⊥平面CBD,进一步得到BC⊥AB1; (Ⅱ)以O为原点,分别以OD,OB1 , OC所在的直线为x,y,z轴,建立空间直角坐标系Oxyz,求出相应点的坐标,再求得平面ABC及平面A1AC的法向量,由两个法向量所成角的余弦值可得二面角A1﹣AC﹣B的平面角的余弦值.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且a+b=2ccosA. (Ⅰ)求证:C=2A;
(Ⅱ)求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xoy取相同的单位长度,且以原点为极点,x轴的正半轴为极轴)中,圆C的极坐标方程为ρ=4cosθ.
(1)若直l线与圆C相切,求实数a的值;
(2)若点M的直角坐标为(1,1),求过点M且与直线l垂直的直线m的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,a2+b2+c2=ac+bc+ca.
(1)证明:△ABC是正三角形;
(2)如图,点D的边BC的延长线上,且BC=2CD,AD= ,求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,把函数f(x)的图象向右平移 个单位得函数g(x)的图象,则下面结论正确的是(
A.函数g(x)是奇函数
B.函数g(x)在区间[π,2π]上是增函数
C.函数g(x)的最小正周期是4π
D.函数g(x)的图象关于直线x=π对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”,翻译成今天的话是:一只大鼠和一只小鼠分别从的墙两侧面对面打洞,已知第一天两鼠都打了一尺长的洞,以后大鼠每天打的洞长是前一天的2倍,小鼠每天打的洞长是前一天的一半,已知墙厚五尺,问两鼠几天后相见?相见时各打了几尺长的洞?设两鼠x 天后相遇(假设两鼠每天的速度是匀速的),则x=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100


(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?
(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望. 参考公式: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术均输》中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,Sn是前n项和,且S3=S8 , S7=Sk , 则k的值为(
A.4
B.11
C.2
D.12

查看答案和解析>>

同步练习册答案