精英家教网 > 高中数学 > 题目详情

【题目】5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:

(l)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.

【答案】(1)(2)(3)

【解析】本题考查了有条件的概率的求法,做题时要认真分析,找到正确方法.(1)因为有5件是次品,第一次抽到理科试题,有3中可能,试题共有5件,(2)因为是不放回的从中依次抽取2件,所以第一次抽到理科题有5种可能,第二次抽到理科题有4种可能,第一次和第二次都抽到理科题有6种可能,总情况是先从5件中任抽一件,再从剩下的4件中任抽一件,所以有20种可能,再令两者相除即可.

3)因为在第1次抽到理科题的条件下,第2次抽到文科题的概率为

1……….5

2………5

3……….5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,点A1在底面ABC的投影是线段BC的中点O.

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求证:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣ (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的两个数列{an}和{bn}满足:an+1= ,n∈N*
(1)设bn+1=1+ ,n∈N*,求证:数列{ }是等差数列;
(2)设bn+1= ,n∈N*,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面分别为的中点,为侧棱上的动点

(Ⅰ)求证:平面平面

(Ⅱ)若为线段的中点,求证:平面

(Ⅲ)试判断直线与平面是否能够垂直。若能垂直,求的值;若不能垂直,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:厘米)满足关系:.若不建隔热层,每年的能源消耗费用为万元.为隔热层建造费用与年的能源消耗费用之和.

1)求的值及的表达式;

2)隔热层修建多厚时,总费用最小,并求其最小值.

查看答案和解析>>

同步练习册答案