精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C所对的边分别为a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=
2
,求△ABC的周长.
考点:正弦定理
专题:三角函数的求值,解三角形
分析:(Ⅰ)利用三角形面积公式列出关系式,将ac,已知面积代入求出sinB的值,即可确定出B的度数;
(Ⅱ)利用余弦定理列出关系式,将cosB的值,b,ac的值代入求出a+c的值,即可确定三角形ABC周长.
解答: 解:(Ⅰ)∵S△ABC=
1
2
acsinB=
3
3
4
,ac=3,
∴sinB=
3
2

∵B为三角形内角,
∴B=
π
3
3

(Ⅱ)当B=
π
3
,b=
2
,ac=3时,由余弦定理得:b2=a2+c2-2accos
π
3
=(a+c)2-3ac,
即2=(a+c)2-9,
解得:a+c=
11

此时△ABC周长为a+b+c=
11
+
2

当B=
3
时,b=
2
,ac=3,由余弦定理得:b2=a2+c2-2accos
3
=a2+c2+ac,
即2=a2+c2+3,
∴a2+c2=-1(舍去),
综上,△ABC周长为
11
+
2
点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某算法的流程图如图所示,若输入x=7,y=6,则输出的有序数对为(  )
A、(13,14)
B、(12,13)
C、(14,13)
D、(13,12)

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=1-i(i是虚数单位),则复数
2
z
的虚部是(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两容器中分别盛有两种浓度的某种溶液300mL,从甲容器中取出100mL溶液,将其倒入乙容器中搅匀,再从乙容器中取出100mL溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:a1=20%,b1=2%,第n次调和后的甲、乙两种溶液的浓度分别记为:an,bn
(Ⅰ)请用an,bn分别表示an+1和bn+1
(Ⅱ)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于0.1%.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校研究性学习小组,为了分析2012年某小国的宏观经济形势,查阅了有关材料,得到2011年和2012年1-5月该国CPI同比(即当年某月与前一年同月比)的增长数据(见下表),但2012年3,4,5三个月的数据(分别记为x,y,z)没有查到,有的同学清楚记得2012年1-5月的CPI数据成等差数列.
(Ⅰ)求x,y,z的值;
(Ⅱ)求2012年1-5月该国CPI数据的方差;
(Ⅲ)一般认为,某月CPI达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点则严重通货膨胀.现随机的从下表2011年的五个月和2012年的五个月的数据中各抽取一个数据,求相同月份2011年通货膨胀,并且2012年严重通货膨胀的概率.附表:2011年和2012年1-5月CPI数据(单位:百分点 注:1个百分点=1%)
年份
月份
1 2 3 4 5
2011 2.7 2.4 2.8 3.1 2.9
2012 4.9 5.0 x y z

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆O:x2+y2=2上的点,过P作直线l垂直x轴于点Q,M为l上一点,且
PQ
=
2
MQ
,当点P在圆上运动时,记点M的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)某同学研究发现:若把三角板的直角顶点放置在圆O的圆周上,使其一条直角边过点F(1,0),则三角板的另一条直角边所在直线与曲线Γ有且只有一个公共点.你认为该同学的结论是否正确?若正确,请证明;若不正确,说明理由.
(Ⅲ)设直线m是圆O所在平面内的一条直线,过点F(1,0)作直线m的垂线,垂足为T连接OT根据“线段OT长度”讨论“直线m与曲线Γ的公共点个数”.(直接写出结论,不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△ABC的三个内角A,B,C的对边分别为a,b,c,且满足cos2B-cos(A+C)=0.
(Ⅰ)求角B的大小;
(Ⅱ)若sinA=3sinC,△ABC的面积为
3
3
4
,求b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在定义域内存在实数x,使得f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+4x-a(a∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(2)若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,求实数m的取值范围;
(3)(文)若f(x)=ex-ex-2m为定义域R上的“局部奇函数”,求证:若x>1,则ex>x2-2mx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图,则输出的s的值为
 

查看答案和解析>>

同步练习册答案