精英家教网 > 高中数学 > 题目详情
设z=1-i(i是虚数单位),则复数
2
z
的虚部是(  )
A、1B、-1C、iD、-i
考点:复数的基本概念
专题:数系的扩充和复数
分析:把z代入
2
z
,然后利用复数的除法运算化为a+bi(a,b∈R)的形式,则复数
2
z
的虚部可求.
解答: 解:∵z=1-i,
2
z
=
2
1-i
=
2(1+i)
(1-i)(1+i)
=
2+2i
2
=1+i

∴复数
2
z
的虚部是1.
故选:A.
点评:本题考查了复数代数形式的除法运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列四个命题:
①若一个圆锥的底面半径缩小到原来的
1
2
,其体积缩小到原来的
1
4

②若两组数据的中位数相等,则它们的平均数也相等;
③直线x+y+1=0与圆x2+y2=
1
2
相切;
④“10a≥10b”是“lga≥lgb”的充分不必要条件;
⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中真命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)-4f(-2)>0的解集为(  )
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

某班有50名学生,其中正、副班长各1人,现要选派5人参加一项社区活动,要求正、副班长至少1人参加,问共有多少种选派方法?下面是学生提供的四个计算式,其中错误的是(  )
A、
C
1
2
C
4
49
B、
C
5
50
-
C
5
48
C、
C
1
2
C
4
49
-
C
2
2
C
3
48
D、
C
1
2
C
4
48
+
C
2
2
C
3
48

查看答案和解析>>

科目:高中数学 来源: 题型:

将5名实习教师分配到高一年级的3个班实习,每班至少1名,则不同的分配方案有(  )
A、30种B、60种
C、90种D、150种

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点A(1,
2
)是离心率为
2
2
的椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)上的一点,斜率为
2
的直线BD交椭圆C于B,D两点,且A、B、D三点互不重合.
(1)求椭圆C的方程;
(2)求证:直线AB,AD的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,
(1)若直线y=kx+1与函数f(x)的图象相切,求实数k的值;
(2)若函数g(x)=f(eex),a<b,试证明:
g(a)+g(b)
2
g(b)-g(a)
b-a

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C所对的边分别为a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=
2
,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点(
3
1
2
),以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,问丨OR丨•丨OS丨是否为定值?若是请求出定值,不是则说明理由.

查看答案和解析>>

同步练习册答案