精英家教网 > 高中数学 > 题目详情

【题目】电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. 附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83


(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

非体育迷

体育迷

合计

总计


(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.

【答案】
(1)解:由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:

非体育迷

体育迷

合计

30

15

45

45

10

55

总计

75

25

100

将2×2列联表中的数据代入公式计算可得K2的观测值为:k= = ≈3.030.

∵3.030<3.841,

∴我们没有理由认为“体育迷”与性别有关


(2)解:由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中ai(i=1,2,3)表示男性,bj(j=1,2)表示女性.

设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).

∴P(A)=


【解析】(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表,将2×2列联表中的数据代入公式计算可得K2的观测值为:k≈3.030.由“独立性检验基本原理”即可判断出;(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1 , a2),(a1 , a3),(a2 , a3),(a1 , b1),(a1 , b2),(a2 , b1),(a2 , b2),(a3 , b1),(a3 , b2),(b1 , b2)},其中ai(i=1,2,3)表示男性,bj(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,可得事件A包括7个基本事件,利用古典概率计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD所在的平面与正方形ADPQ所在的平面相互垂直,E是QD的中点. (Ⅰ)求证:QB∥平面AEC;
(Ⅱ)求证:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面体ABCEQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2x+y+5=0与x﹣2y=0的交点,圆C1:x2+y2﹣2x﹣2y﹣4=0与圆C2:x2+y2+6x+2y﹣6=0相较于A、B两点.
(1)若点P(5,0)到直线l的距离为4,求l的直线方程;
(2)若直线l与直线AB垂直,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过两点M(﹣3,3),N(1,﹣5),且圆心在直线2x﹣y﹣2=0上
(1)求圆的方程;
(2)直线l过点(﹣2,5)且与圆C有两个不同的交点A、B,若直线l的斜率k大于0,求k的取值范围;
(3)在(2)的条件下,是否存在直线l使得弦AB的垂直平分线过点P(3,﹣1),若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题是真命题的是(
A.a>b是ac2>bc2的充要条件
B.a>1,b>1是ab>1的充分条件
C.?x0∈R,e ≤0
D.若p∨q为真命题,则p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.

(1)求椭圆的方程;

(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β均为锐角,sinα= ,cos(α+β)= ,求(Ⅰ)sinβ,(Ⅱ)tan(2α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC中,sin = ,AB=2,点D在线段AC上,且AD=2DC,BD= .(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.

查看答案和解析>>

同步练习册答案