【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.
(1)求椭圆的方程;
(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.
【答案】(1);(2).
【解析】试题分析:(1)先写出一个短轴端点与一个焦点的直线方程可以是,即,利用圆心到直线距离等于半径,列方程求解即可;
(2)抛物线的焦点在轴的正半轴上,故,故,抛物线的方程为,由,可得,设点,则, 代入求出关于的表达式,利用判别式大于0的范围,求值域即可.
试题解析:
(1) 设椭圆的焦距为,则由条件可得,连接一个短轴端点与一个焦点的直线方程可以是,即,由直线与圆相切可得,故,则,故椭圆的方程为.
(2) 抛物线的焦点在轴的正半轴上,故,故,抛物线的方程为,由,可得,由直线与抛物线有两个不同交点可得
在时恒成立,设点,则,则,又点到直线的距离为,故的面积为.令,则,令,可得或,故在上单调递增,在上单调递减,故时, 取最大值,则的面积取最大值为.
科目:高中数学 来源: 题型:
【题目】(12分)在数列中,对于任意,等式
成立,其中常数.
(Ⅰ)求的值;
(Ⅱ)求证:数列为等比数列;
(Ⅲ)如果关于n的不等式的解集为
,求b和c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | 0.4 | |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求 的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | |||||
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为正品的概率;
(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为4的正方形的边上有一点沿着折线由点(起点)向点(终点)运动。设点运动的路程为,的面积为,且与之间的函数关系式用如图所示的程序框图给出.
(1)写出框图中①、②、③处应填充的式子;
(2)若输出的面积值为6,则路程的值为多少?并指出此时点在正方形的什么位置上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 ,
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子原件生产厂生产的10件产品中,有8件一级品,2件二级品,一级品和二级品在外观上没有区别.从这10件产品中任意抽检2件,计算:
(1)2件都是一级品的概率;
(2)至少有一件二级品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com