【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6 ,
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列{ }的前n项和.
【答案】
(1)解:设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2= .
由条件可知各项均为正数,故q= .
由2a1+3a2=1得2a1+3a1q=1,所以a1= .
故数列{an}的通项式为an= .
(2)解:bn= + +…+ =﹣(1+2+…+n)=﹣ ,
故 =﹣ =﹣2( ﹣ )
则 + +…+ =﹣2[(1﹣ )+( ﹣ )+…+( ﹣ )]=﹣ ,
所以数列{ }的前n项和为﹣
【解析】(1)设出等比数列的公比q,由a32=9a2a6 , 利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(2)把(1)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an , 利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{ }的前n项和.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | |||
女性 | |||
合计 |
(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.
(1)求椭圆的方程;
(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数, ),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(Ⅰ)讨论直线与圆的公共点个数;
(Ⅱ)过极点作直线的垂线,垂足为,求点的轨迹与圆相交所得弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式 ; 函数 (其中 ).
(1)若函数g(θ)的最大值为4,求m的值.
(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com