精英家教网 > 高中数学 > 题目详情
7.如图,某段铁路AB长为80公里,BC⊥AB,且BC=10公里,为将货物从A地运往C地,现在AB上的距点B为x的点M处修一公路至点C.已知铁路运费为每公里2元,公路运费为每公里4元.
(1)将总运费y表示为x的函数.
(2)如何选点M才使总运费最小?

分析 (1)铁路AM上的运费为2(80-x),公路MC上的运费为$4\sqrt{100+{x^2}}$,然后列出总运费y表示为x的函数.
(2)利用函数的导数求解函数的最值即可.

解答 解:(1)依题意,铁路AM上的运费为2(80-x),
公路MC上的运费为$4\sqrt{100+{x^2}}$,
则由A到C的总运费为$y=2({80-x})+4\sqrt{100+{x^2}}({0≤x≤80})$.
…(6分)
(2)$y'=-2+\frac{4x}{{\sqrt{100+{x^2}}}}({0≤x≤80})$,…(8分)
令y'=0,解得$x=\frac{{10\sqrt{3}}}{3}$,或$x=-\frac{{10\sqrt{3}}}{3}$(舍).…(10分)
当$0≤x≤\frac{{10\sqrt{3}}}{3}$时,y'≤0;当$\frac{{10\sqrt{3}}}{3}≤x≤80$时,y'≥0;
故当$x=\frac{{10\sqrt{3}}}{3}$时,y取得最小值,
即当在距离点B为$\frac{{10\sqrt{3}}}{3}$公里时的点M处修筑公路至C时总运费最省.…(12分)

点评 本题考查函数的实际应用,函数的导数的应用,最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a2=3,a2a3=2a4+1.
(1)求{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:?x∈R,使得x2+2ax+2-a=0;命题q:不等式ax2-$\sqrt{2}$ax+1>0对任意x∈R成立,若p假q真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{x-1}{a(x+1)}$(a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明:$(\frac{2018}{2017})^{2017.5}$>e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,A=60°,b,c是方程x2-3x+2=0的两个实根,则边BC长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则双曲线的渐近方程是(  )
A.y=$±\frac{1}{4}$xB.y=$±\frac{1}{2}$xC.y=±2xD.y=±4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线与圆x2+(y-2)2=1至多有一个交点,则双曲线的离心率为(  )
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$a∈(0,\frac{π}{2})$,tan α=2,则cosα=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,将y=f(x)的图象上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再把所得的图象向右平移φ个单位长度,得到偶函数y=g(x)的图象,则φ的值可能是(  )
A.$\frac{π}{8}$B.$\frac{5π}{24}$C.$\frac{3π}{4}$D.$\frac{15π}{24}$

查看答案和解析>>

同步练习册答案