精英家教网 > 高中数学 > 题目详情
12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则双曲线的渐近方程是(  )
A.y=$±\frac{1}{4}$xB.y=$±\frac{1}{2}$xC.y=±2xD.y=±4x

分析 求出抛物线的焦点,可得双曲线的c,再由双曲线的a,b,c的关系,解方程可得a=1,由双曲线的渐近线方程即可得到所求.

解答 解:抛物线y2=4$\sqrt{5}$x的焦点为($\sqrt{5}$,0),
可得双曲线的c=$\sqrt{5}$,
即有a2+4=5,解得a=1,
则双曲线的方程为x2-$\frac{{y}^{2}}{4}$=1,
即有双曲线的渐近方程是y=±2x.
故选:C.

点评 本题考查双曲线的方程和性质,主要是渐近线方程的求法,注意运用抛物线的焦点和双曲线的基本量的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$},P={x|-1≤x≤4},则(∁UM)∩P等于(  )
A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≥0}\\{x-5≤0}\\{y+2≥0}\end{array}\right.$,则z=x2+y2的最小值与最大值分别为(  )
A.$\sqrt{2}$,$\sqrt{34}$B.2,$\sqrt{34}$C.4,34D.2,34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+ax2+bx在x=-$\frac{2}{3}$与x=1处都取得极值.
(1)求a,b的值;
(2)求曲线y=f(x)在x=2处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某段铁路AB长为80公里,BC⊥AB,且BC=10公里,为将货物从A地运往C地,现在AB上的距点B为x的点M处修一公路至点C.已知铁路运费为每公里2元,公路运费为每公里4元.
(1)将总运费y表示为x的函数.
(2)如何选点M才使总运费最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17. 2017年5月14日“一带一路”国际合作高峰论坛在北京举行,会议期间,达成了多项国际合作协议,其中有一项是在某国投资建设一个深水港码头.如图,工程师为了解深水港码头海域海底的构造,在海平面内一条直线上取A,B,C三点进行测量,已知AB=60cm,BC=120cm,在A处测得水深AD=120cm,在B处测得水深BE=200m,在C处测得水深CF=150m,则cos∠DEF=$-\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正数a,b满足等式2a+3b=6,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则下列不对的说法是(  )
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列4个命题:
①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2-(8sinα)x+cos2α≥0对?x∈R恒成立,则α的取值范围是0≤α≤$\frac{π}{6}$.
其中真命题的序号是②③.

查看答案和解析>>

同步练习册答案