精英家教网 > 高中数学 > 题目详情
2.设全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$},P={x|-1≤x≤4},则(∁UM)∩P等于(  )
A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}

分析 运用绝对值不等式的解法,化简集合M,再由补集和交集的定义,即可得到所求集合.

解答 解:全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$}={x|-$\frac{5}{2}$≤x-$\frac{1}{2}$≤$\frac{5}{2}$}={x|-2≤x≤3},
P={x|-1≤x≤4},
则(∁UM)∩P={x|x>3或x<-2}∩{x|-1≤x≤4}={x|3<x≤4},
故选:C.

点评 本题考查集合的补集和交集的求法,注意运用定义法,同时考查绝对值不等式的解法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知b=7,c=8,B=60°,则△ABC的面积为6$\sqrt{3}$或10$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设命题p:?x0∈(0,+∞),3${\;}^{{x}_{0}}$+x0=2016,命题q:?a∈(0,+∞),f(x)=|x|-ax,(x∈R)为偶函数,那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a,b∈R,若a2+b2-ab=1,则ab的取值范围是[$-\frac{1}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a2=3,a2a3=2a4+1.
(1)求{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足$\left\{\begin{array}{l}x-y-1≥0\\ x+y≥0\\ x≤3\end{array}\right.$,则(x-1)2+(y-1)2的取值范围是(  )
A.[5,25]B.[1,25]C.$[{\frac{1}{2},20}]$D.$[{\frac{5}{2},20}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.4×5×6×…×n=(  )
A.A${\;}_{n}^{n-3}$B.A${\;}_{n}^{n-4}$C.A${\;}_{n}^{4}$D.(n-4)!

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z满足z3=1,且z的虚部为sin60°.
(1)求复数z;
(2)设z,z2,z+z2在复平面上的对应点分别为A,B,C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则双曲线的渐近方程是(  )
A.y=$±\frac{1}{4}$xB.y=$±\frac{1}{2}$xC.y=±2xD.y=±4x

查看答案和解析>>

同步练习册答案